Physics of the Solid State
Volumes and Issues
Induced phase transition in monocrystalline solids solutions PbMg1/3Nb2/3O3-29PbTiO3 and PbZn1/3Nb2/3O3-9PbTiO3: similarity and difference
Kamzina L.S.1
1Ioffe Institute, St. Petersburg, Russia
Email: ASKam@mail.ioffe.ru

PDF
The kinetics of the induced phase transition in single-crystal relaxor solid solutions PbMg1/3Nb2/3O3-29PbTiO3 and PbZn1/3Nb2/3O3-9PbTiO3 is studied when an electric field is applied along the [001] direction. At temperatures below the temperature of the morphotropic phase transition, the changes in the dielectric constant and optical transmission in electric fields are studied. It is shown that the decrease in optical transmission with time is associated only with a change in the sizes of nanoregions during the phase transition. It was found that the induced phase transition proceeds differently in these crystals. In PMN-29PT crystals, the formation of ferroelectric phases and the rapid establishment of macroscopic polarization are preceded by a certain delay time, while in PZN-9PT crystals, the ferroelectric phase is induced immediately after the application of the field without a delay time. The results obtained are explained by the different structures of the low-temperature phases in these compounds. Keywords: ferroelectricity, relaxors, induced phase transition.
  1. I.W. Chen. J. Phys. Chem. Solids 61, 197 (2000)
  2. G. Burns, F.H. Dacol. Solid State Commun. 48, 853 (1983)
  3. H. Arndt, F. Schmidt. Ferroelectrics 79, 149 (1988)
  4. M. Roth, E. Mojaev, E. Dul'kin, P. Gemeiner, B. Dkhil. Phys. Rev. Lett. 98, 265701 (2007)
  5. Y-H. Bing, A.A. Bokov, Z.-G. Ye, B. Noheda, G. Shirane. J. Phys.: Condens. Matter 17, 2493 (2005)
  6. Y.-H. Bing, A.A. Bokov, Z.-G. Ye. Current Appl. Phys. 11, 14 (2011)
  7. E.V. Colla, E.Y. Koroleva, N.M. Okuneva, S.B. Vakhrushev. Phys. Rev. Lett. 74, 1681 (1995)
  8. E.V. Colla, M.B. Weissman. Phys. Rev. B 72, 104 106 (2005)
  9. E.V. Colla, D. Vigil, J. Timmerwilke, M.B. Weissman. Phys. Rev. B 75, 214 201 (2007)
  10. E.V. Colla, N. Jurik, Y. Liu, M.E.X. Delgado, M.B. Weissman, D.D. Vieland, Z.-G. Ye. J. Appl. Phys. 113, 184104 (2013)
  11. L.S. Kamzina, L.A. Kulakova, Phys. Solid State 59, 10, 1945 (2017)
  12. L.S. Kamzina, L.A. Kulakova, Phys. Solid State 60, 5, 955 (2018)
  13. L.S. Kamzina, L.A. Kulakova. Phys. Solid State 58, 1, 177 (2016)
  14. L.S. Kamzina, L.A. Kulakova. Phys. Solid State 57, 11, 2165 (2015)
  15. S.J. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, X. Geng. Prog. Mater. Sci. 68, 1 (2015)
  16. E.W. Sun, W.W. Cao. Prog. Mater. Sci. 65, 124 (2014)
  17. J. Xu, S. Fan, B. Lu, J. Tong, A. Zhang. Jpn. J. Appl. Phys. 41, 7000 (2002)
  18. I. Bhaumik, G. Singh, S. Ganesamoorthy, A.K. Karnal, V.S. Timari, V.K. Wadhawan. Ferroelectrics 326, 73 (2005)
  19. D.E. Cox, B. Noheda, G. Shirane, Y. Uesu, K. Fujishiro, Y. Yamada. Appl. Phys. Lett. 79, 400 (2001)
  20. T. Li, Z. Dud, N. Tamura, Mao Ye, S. Inguva, Wei Lu, X. Zeng, S. Ke. J. Eur. Ceram. Society 38, 1488 (2018)
  21. B. Noheda, D.E. Cox, G. Shirane, S.E. Park, L.E. Cross. Phys. Rev. Lett. 86, 3891 (2001)
  22. H. Cao, J. Li, D. Vieland, G. Xu. Phys. Rev. B 73, 184110 (2006)
  23. S.J. Zhang, L. Lebrun, S. Rhee, C.A. Randall, T.R. Shrout. Appl. Phys. Lett. 81, 892 (2002)
  24. M. Davis, D. Damjanovic, N. Setter. Phys. Rev. B 73, 014115 (2006)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru