Dependence of charge carrier mobility in hybrid nanostructures at the interface of graphene and molecular ions on their charge density
Butko A. V.1, Butko V. Y.1, Kumzerov Y. A.1
1Ioffe Institute, St. Petersburg, Russia
Email: vladimirybutko@gmail.com
Hybrid nanostructures with large interface between nanostructural elements play an important role in the modern electronics. Among these nanostructures are hybrid nanostructures formed at the interface of graphene with ensembles of molecular ions in the solution gated Graphene Field Effect Transistors (GFETs) that are promising for chemical and biological sensor fabrication. Therefore investigation of interfacial effects in electrical transport in these systems is interesting. This work is a theoretical study of dependence of the charge carrier mobility (μ) in these nanostructures on density of the interfacial molecular ions (Nii). We show that dependence μ propto 1/(Nii)1/2 obtained in free charge carrier model with short range scattering in case of the weak interaction between the charge carriers and the interfacial ions is in agreement with experimental transistor characteristics obtained at the high gate voltages. Keywords: graphene, hybrid nanostructures, transistors, mobility, interface.
- P.K. Ang, W. Chen, A.T.S. Wee, K.P. Loh. J. Am. Chem. Soc. 130, 44, 14392 (2008)
- H. Li, Y. Zhu, M.S. Islam, M.A. Rahman, K.B. Walsh, G. Koley. Sens. Actuators B Chem. 253, 759 (2017)
- M.H. Lee, B.J. Kim, K.H. Lee, I.-S. Shin, W. Huh, J.H. Cho, M.S. Kang. Nanoscale 7, 17, 7540 (2015)
- N.S. Green, M.L. Norton. Anal. Chim. Acta 853, 127 (2015)
- S. Taniselass, M.K.M. Arshad, S.C.B. Gopinath. Biosens. Bioelectron. 130, 276 (2019)
- X. You, J.J. Pak, Sens. Actuators B 202, 1357 (2014)
- A.V. Butko, V.Y. Butko, S.P. Lebedev, A.A. Lebedev, V.Y. Davydov, I.A. Eliseyev, Y.A. Kumzerov. J. Appl. Phys. 128, 21, 215302 (2020)
- A.V. Butko, V.Yu. Butko, S.P. Lebedev, A.A. Lebedev, Yu.A. Kumzerov. Phys. Solid State 60, 12, 2668 (2018)
- A.V. Butko, V.Y. Butko, S.P. Lebedev, A.A. Lebedev, V.Y. Davydov, A.N. Smirnov, I.A. Eliseyev, M.S. Dunaevskiy, Y.A. Kumzerov. Appl. Surf. Sci. 444, 36 (2018)
- A.V. Butko, V.Yu. Butko, S.P. Lebedev, A.A. Lebedev, Y.A. Kumzerov. Phys. Solid State 59, 10, 2089 (2017)
- A.V. Butko, V.Yu. Butko, S.P. Lebedev, A.N. Smirnov, V.Yu. Davydov, A.A. Lebedev, Yu.A. Kumzerov. Phys. Solid State 58, 7, 1483 (2016)
- A.V. Butko, V.Yu. Butko. Phys. Solid State 57, 5, 1048 (2015)
- M. Dankerl, M.V. Hauf, A. Lippert, L.H. Hess, S. Birner, I.D. Sharp, A. Mahmood, P. Mallet, J. Veuillen, M. Stutzmann, J.A. Garrido. Adv. Funct. Mater. 20, 18, 3117 (2010)
- J.L. Tedesco, B.L. VanMil, R.L. Myers-Ward, J.M. Mc Crate, S.A. Kitt, P.M. Campbell, G.G. Jernigan, J.C. Culbertson, C.R. Eddy, D.K. Gaskill. Appl. Phys. Lett. 95, 12, 122102 (2009)
- A. Browning, N. Kumada, Y. Sekine, H. Irie, K. Muraki, H. Yamamoto. Appl. Phys. Exp. 9, 6, 065102 (2016)
- S. Adam, E.H. Hwang, V.M. Galitski, S. Das Sarma. PNAS 104, 47, 18392 (2007)
- E.H. Hwang, S. Adam, S. Das Sarma. Phys. Rev. Lett. 98, 18, 186806 (2007)
- T.A. Petach, K.V. Reich, X. Zhang, K. Watanabe, T. Taniguchi, B.I. Shklovskii, D. Goldhaber-Gordon. ACS Nano 11, 8, 8395 (2017)
- J. Xia, F. Chen, J. Li, N. Tao. Nature Nanotechnology 4, 8, 505 (2009)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.