Analysis of toroidal Alfven eigenmode-induced fast ion losses in Globus-M2 spherical tokamak
Balachenkov I. M. 1, Bakharev N.N.1, Varfolomeev V. I.1, Gusev V.K.1, Iliasova M. V.1, Kurskiev G. S.1, Minaev V. B.1, Patrov M. I.1, Petrov Yu. V.1, Sakharov N. V.1, Skrekel O. M.1, Telnova A. Yu. 1, Khilkevitch E. M.1, Shevelev A. E.1, Shchegolev P. B.1
1Ioffe Institute, St. Petersburg, Russia
Email: balachenkov@mail.ioffe.ru

PDF
With an increase of magnetic field up to 0.8 T and plasma current to 400 kA, fast ion losses rate in the discharges with toroidal Alfven eigenmodes decreased in tokamak Globus-M2 comparing with Globus-M tokamak discharges. Taking into account the data on the discharges with increased magnetic field and plasma current, the regression fit of neutral particle analyzer flux drop in energy channel close to neutral beam energy on relative eigenmode magnitude, the value of magnetic field and plasma current was analyzed. The power of flux drop dependence on TAE magnitude was found to be ~0.5 and inverse proportional on the value of product of magnetic field and plasma current, which is highly likely is determined only by plasma current due to weak dependence on magnetic field. The result obtained indicates that fast ion losses in Globus-M2, stimulated by toroidal Alfven eigenmodes are mostly determined by the shift of passing orbits to the plasma edge. With the increase of plasma current and magnetic field, neutron flux drops arising in the moments of toroidal mode bursts have also decreased. Keywords: TAE, NPA, spherical tokamak, fast ion losses
  1. W.W. Heidbrink. Phys. Plasmas, 15, 055501 (2008). DOI: 10.1063
  2. K.-L. Wong. Plasma Phys. Control. Fusion, 41, R1 (1999). DOI: 10.1088/0741-3335/41/1/001
  3. ITER Physics Expert Group on Energetic Particles, Heating and Current Drive and ITER Physics Basis Editors. Nucl. Fusion, 39, 2471 (1999). DOI: 10.1088/0029-5515/39/12/305
  4. S.E. Sharapov, M. Garcia-Munoz, M.A. Van Zeeland, B. Bobkov, I.G.J. Classen, J. Ferreira, A. Figueiredo, M. Fitzgerald, J. Galdon-Quiroga, D. Gallart, B. Geiger, J. Gonzalez-Martin, T. Johnson, P. Lauber, M. Mantsinen, F. Nabais, V. Nikolaeva, M. Rodriguez-Ramos, L. Sanchis-Sanchez, P.A. Schneider, A. Snicker, P. Vallejos and the AUG Team and the EUROfusion MST1 Team11. Plasma Phys. Control. Fusion, 60, 014026 (2018). DOI: 10.1088/1361-6587/aa90ee
  5. M.P. Gryaznevich, S.E. Sharapov. Plasma Phys. Controlled. Fusion, 46, S15 (2004). DOI: 10.1088/0741-3335/46/7/S02
  6. E.D. Fredrickson, C.Z. Cheng, D. Darrow, G. Fu, N.N. Gorelenkov, G. Kramer, S.S. Medley, J. Menard, L. Roquemore, D. Stutman, R.B. White. Phys. Plasmas, 16, 2852 (2003). DOI: 10.1063/1.1579493
  7. M.P. Gryaznevich, S.E. Sharapov. Nucl. Fusion, 40, 907 (2000). DOI: 10.1088/0029-5515/40/5/303
  8. V.V. Bulanin, V.K. Gusev, G.S. Kurskiev, V.B. Minaev, M.I. Patrov, A.V. Petrov, M.A. Petrov, Yu.V. Petrov, A.Yu. Tel'nova, A.Yu. Yashin. Tech. Phys. Lett., 43, 1067 (2017) DOI: 10.1134/S1063785017120033]
  9. Yu.V. Petrov, N.N. Bakharev, V.V. Bulanin, V.K. Gusev, G.S. Kurskiev, A.A. Martynovc, S.Yu. Medvedev, V.B. Minaev, M.I. Patrov, A.V. Petrov, N.V. Sakharov, P.B. Shchegolev, A.Yu. Telnova, S.Yu. Tolstyakov, A.Yu. Yashin. Plasma Phys. Rep., 25, 723 (2019) DOI: 10.1134/S1063780X19
  10. N.F. Cramer. The Physics of Alfven Waves (WILEY-VCH Verlag, Berlin, 2001), p. 201--204
  11. E.D. Fredrickson, N.A. Crocker, D.S. Darrow, N.N. Gorelenkov, G.J. Kramer, S. Kubota, M. Podesta, R.B. White, A. Bortolon, S.P. Gerhardt, R.E. Bell, A. Diallo, B. LeBlanc, F.M. Levinton, H. Yuh. Nucl. Fusion, 53, 013006 (2013). DOI: 10.1088/0029-5515/53/1/013006
  12. O.M. Jones, M. Cecconello, K.G. McClements, I. Klimek, R.J. Akers, W.U. Boeglin, D.L. Keeling, A.J. Meakins, R.V. Perez, S.E. Sharapov, M. Turnyanskiy and the MAST team. Plasma Phys. Control. Fusion, 57, 125009 (2015). DOI: 10.1088/0741-3335/57/12/125009
  13. E. Hirvijoki, A. Snicker, T. Korpilo, P. Lauber, E. Poli, M. Schneller, T. Kurki-Suonio. Comp. Phys. Communications, 183, 2589 (2012). DOI: 10.1016/j.cpc.2012.07.009
  14. V.B. Minaev, V.K. Gusev, N.V. Sakharov, V.I. Varfolomeev, N.N. Bakharev, V.A. Belyakov, E.N. Bondarchuk, P.N. Brunkov, F.V. Chernyshev, V.I. Davydenko, V.V. Dyachenko, A.A. Kavin, S.A. Khitrov, N.A. Khromov, E.O. Kiselev. Nucl. Fusion, 57, 066047 (2017). DOI: 10.1088/1741-4326/aa69e0
  15. V.K. Gusev, N.N. Bakharev, V.A. Belyakov, B.Ya. Ber, E.N. Bondarchuk, V.V. Bulanin, A.S. Bykov, F.V. Chernyshev, E.V. Demina, V.V. Dyachenko, P.R. Goncharov, A.E. Gorodetsky, E.Z. Gusakov, A.D. Iblyaminova, A.A. Ivanov. Nucl. Fusion, 55, 104016 (2015). DOI: 10.1088/0029-5515/55/10/104016
  16. V.K. Gusev, V.E. Go E.Z. Gusakov, V.V. D'yachenko, M.A. Irzak, V.B. Minaev, E.E. Mukhin, A.N. Novokhatskii, K.A. Podushnikova, G.T. Razdobarin, N.V. Sakharov, E.N. Tregubova, V.S. Uzlov, O.N. Shcherbinin, V.A. Belyakov, A.A. Kavin, Yu.A. Kostsov, E.G. Kuz'min, V.F. Soikin, E.A. Kuznetsov, V.A. Yagnov. Tech. Phys., 44, 1054 (1999). DOI: 10.1134/1.1259469]
  17. V.K. Gusev, A.V. Dech, L.A. Esipov, V.B. Minaev, A.G. Barsukov, G.B. Igon'kina, V.V. Kuznetsov, A.A. Panasenkov, M.M. Sokolov, G.N. Tilinin, A.V. Lupin, V.K. Markov. Tech. Phys., 52, 1127 (2007) DOI: 10.1134/S1063784207090058]
  18. A.Yu. Telnova, V.B. Minaev, P.B. Shchegolev, N.N. Bakharev, I.V. Shikhovtsev, V.I. Varfolomeev. J. Phys.: Conf. Ser., 1400, 077015 (2019). DOI: 10.1088/1742-6596/1400/7/077015
  19. N.N. Bakharev, F.V. Chernyshev, P.R. Goncharov, V.K. Gusev, A.D. Iblyaminova, V.A. Kornev, G.S. Kurskiev, A.D. Melnik, V.B. Minaev, M.I. Mironov, M.I. Patrov, Yu.V. Petrov, N.V. Sakharov, P.B. Shchegolev, S.Yu. Tolstyakov. Nucl. Fusion, 55, 043023 (2015). DOI: 10.1088/0029-5515/55/4/043023
  20. M.V. Iliasova, A.E. Shevelev, E.M. Khilkevitch, I.N. Chugunov, V.B. Minaev, D.B. Gin, D.N. Doinikov, I.A. Polunovsky, V.O. Naidenov, M.A. Kozlovskiy, M.F. Kudoyarov. Nucl. Instr. and Methods in Phys. Research, Section A, 983, 164590 (2020). DOI: 10.1016/j.nima.2020.164590
  21. N.N. Bakharev, I.M. Balachenkov, F.V. Chernyshev, I.N. Chugunov, V.V. Dyachenko, V.K. Gusev, M.V. Iliasova, E.M. Khilkevitch, N.A. Khromov, E.O. Kiselev, A.N. Konovalov, G.S. Kurskiev, V.B. Minaev, A.D. Melnik, I.V. Miroshnikov, A.N. Novokhatsky, M.I. Patrov, Yu.V. Petrov, N.V. Sakharov, P.B. Shchegolev, A.E. Shevelev, O.M. Skrekel, A.Yu. Telnova, V.A. Tokarev, S.Yu. Tolstyakov, E.A. Tukhmeneva, V.I. Varfolomeev, A.V. Voronin. Plasma Phys. Rep., 46, 675 (2020). DOI: 10.1134/S1063780X20070016]
  22. Yu.V. Petrov, N.N. Bakharev, V.K. Gusev, V.B. Minaev, V.A. Kornev, G.S. Kurskiev, M.I. Patrov, N.V. Sakharov, S.Yu. Tolstyakov, P.B. Shchegolev. J. Plasma Phys., 81, 515810601 (2015). DOI: 10.1017/S0022377815001129
  23. N.N. Bakharev, F.V. Chernyshev, V.K. Gusev, E.O. Kiselev, G.S. Kurskiev, M.M. Larionova, A.D. Melnik, V.B. Minaev, M.I. Mironov, I.V. Miroshnikov, Yu.V. Petrov, N.V. Sakharov, P.B. Shchegolev, O.M. Skrekel, A.Yu. Telnova, E.A. Tukhmeneva, V.I. Varfolomeev. Plasma Phys. Control. Fusion, 62, 125010 (2020). DOI: 10.1088/1361-6587/abbe32
  24. I.M. Balachenkov, Yu.V. Petrov, V.K. Gusev, N.N. Bakharev, V.V. Bulanin, V.I. Varfolomeev, V.V. Dyachenko, N.S. Zhiltsov, E.O. Kiselev, A.N. Konovalov, S.V. Krikunov, G.S. Kurskiev, V.B. Minaev, M.I. Patrov, A.V. Petrov, A.M. Ponomarenko, N.V. Sakharov, A.Yu. Telnova, P.B. Shchegolev, A.Yu. Yashin. J. Phys.: Conf. Ser. 1697, 012212 (2020). DOI: 10.1088/1742-6596/1697/1/012212

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru