The influence of rare-earth metals on glass-forming ability and crystallization of CoFeSiBNb amorphous alloys
Rusanov B. A.
1, Sidorov V. E.
1,2, Svec Sr. P.
3, Janickovic D.
3, Lad'yanov V. I.
4, Petrova S. A.
2,5, Sabirzyanov A. A.
61Ural State Pedagogical University, Ekaterinburg, Russia
2Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
3Institute of Physics, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia
4Udmurt Federal Research Center, Ural Branch Russian Academy of Sciences, Izhevsk, Russia
5Institute of Metallurgy of Ural Branch of the Russian Academy of Science, Ekaterinburg, Russia
6Ural State University of Railway Transport, Yekaterinburg, Russia
Email: rusfive@mail.ru
In present work amorphous alloys Co48Fe25Si4B19Nb4-R (R = Nd, Sm, Tb, Yb) were obtained by planar flow casting in the form of ribbons with 3-5 mm wide and 35-45μm thickness. It was found that crystallization process goes into two stages and depends on the used rare-earth addition and its content in the alloy by differential thermal analysis method. Glass-forming ability criteria were calculated. It is shown that paramagnetic Curie temperature of alloys in liquid state can be used as their a-priori criterion of glass-forming ability. Keywords: amorphous alloys, crystallization, glass-forming ability, differential thermal analysis, x-ray diffraction, rare-earth metals.
- C. Suryanarayana, A. Inoue. Bulk Metallic Glasses (CRC Press, Boca Raton, 2017), DOI: 10.1201/9781315153483
- K. Mohri, K. Kawashima, T. Kozhawa, Y. Yoshida, L.V. Panina. IEEE Trans. Magn., 28, 3150 (1992). DOI: 10.1109/20.179741
- L.V. Panina, K. Mohri, T. Uchiyama, M. Noda, K. Bushida. IEEE Trans. Magn., 31, 1249 (1995). https://doi.org/10.1109/20.364815
- H.Q. Guo, H. Kronmuller, T. Dragon, Z.H. Cheng, B.G. Shen. J. Appl. Phys., 89, 514 (2001). DOI: 10.1063/1.1331649
- Q. Man, H. Sun, Y. Dong, B. Shen, H. Kimura, A. Makino, A. Inoue. Intermetall., 18, 1876 (2010). DOI: 10.1016/j.intermet.2010.02.047
- Y. Dong, A. Wang, Q. Man, B. Shen. Intermetall., 23, 63 (2012). DOI: 10.1016/j.intermet.2011.12.020
- Q. Wang, G. Zhang, J. Zhou, C. Yuan, B. Shen. J. Alloys Compounds, 820, 153105 (2020). DOI: 10.1016/j.jallcom.2019.153105
- V. Sidorov, J. Hosko, V. Mikhailov, I. Rozkov, N. Uporova, P. Svec,, D. Janickovic, I. Matko, P. Svec Sr, L. Malyshev. J. Magn. Magn. Mater., 354, 358 (2014). DOI: 10.1016/j.jmmm.2013.10.038
- J. Hosko, I. Janotova, P. Svec, D. Janickovic, G. Vlasak, E. Illekova, I. Matko, P. Svec. J. Non-Crystall. Solids, 358 ( 12-13), 1545 (2012). DOI: 10.1016/j.jnoncrysol.2012.04.016
- Z.X. Dou, Y.L. Li, K. Lv, T. Wang, F.S. Li, X.D. Hui. Mater. Sci. Eng.: B, 264, 114942 (2021). DOI: 10.1016/j.mseb.2020.114942
- M. Aykol, M.V. Akdeniz, A.O. Mekhrabov. Intermetall., 19 (9), 1330 (2011). DOI: 10.1016/j.intermet.2011.05.004
- Y. Zhang, D.Q. Zhao, M.X. Pan, W.H. Wang. Mater. Sci. Technol., 19 (7), 973 (2003). DOI: 10.1179/026708303225003045
- T. Wakasugi, R. Ota, J. Fukunaga. J. Am. Ceram. Soc., 75 (11), 3129 (1992). DOI: 10.1111/j.1151-2916.1992.tb04398.x
- K. Mondal, B.S. Murty. J. Non-Cryst. Solids, 351 (16-17), 1366 (2005). DOI: 10.1016/j.jnoncrysol.2005.03.006
- X.L. Ji, Y. Pan. Trans. Nonferrous Met. Soc. China, 19 (5), 1271 (2009). DOI: 10.1016/S1003-6326(08)60438-0
- B.A. Rusanov, V.E. Sidorov, V.A. Mikhailov, P. Svec Sr., D. Janickovic, Zh. Tekh. Fiz., 91 (8), 1253 (2021) (in Russian). DOI: 10.21883/JTF.2021.08.51100.28-21
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.