Mode transformation in hybrid waveguides based on lithium niobate for efficient coupling to a standard single mode fiber
Parfenov M. V. 1,2, Agruzov P. M. 1, Ilichev I. V. 1, Usikova A. A. 1, Shamrai A. V. 1
1Ioffe Institute, St. Petersburg, Russia
2Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: mvparfenov@mail.ioffe.ru

PDF
Topology of a hybrid waveguide device, which performs an effective transformation of a standard gradient titanium in-diffused waveguide mode to a hybrid waveguide mode, is considered. With its help a rather large optical mode with size optimal for coupling with standard single-mode fibers can be converted to a mode with a smaller size. Two the most perspective materials for hybrid waveguide fabrication were considered: silicon and titanium dioxide. The theoretical analysis has shown that transformation efficiency of more than 99% is achievable for waveguide devices based on titanium dioxide with contact lithography resolution. Keywords: integrated optics, waveguide, lithium niobate, optical mode, taper, silicon, titanium dioxide
  1. V.M. Petrov, P.M. Agruzov, V.V. Lebedev, I.V. Il'ichev, A.V. Shamray, Phys.-Usp., 64, 722 (2021). DOI: 10.3367/UFNr.2020.11.038871
  2. Y. Jia, L. Wang, F. Chen. Appl. Phys. Rev., 8, 011307 (2021). DOI: 10.1063/5.0037771
  3. M. Zhang, C. Wang, P. Kharel, D. Zhu, M. Lonv car. Optica, 8 (5), 652 (2021). DOI: 10.1364/OPTICA.415762
  4. I. Krasnokutska, R.J. Chapman, J.J. Tambasco, A. Peruzzo. Opt. Express, 27 (13), 17681 (2019). DOI: 10.1364/OE.27.017681
  5. C. Hu, A. Pan, T. Li, X. Wang, Y. Liu, S. Tao, C. Zeng, J. Xia. Opt. Express., 29 (4), 5397 (2021). DOI: 10.1364/OE.416492
  6. L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, L. Marko. Opt. Lett., 44 (9), 2314 (2019). DOI: 10.1364/OL.44.002314
  7. P. Ying, H. Tan, J. Zhang, M. He, M. Xu, X. Liu, R. Ge, Y. Zhu, C. Liu, X. Cai. Opt. Lett., 46 (6), 1478 (2021). DOI: 10.1364/OL.418996
  8. V. Ramaswamy, R.C. Alferness, M. Divino. Electron. Lett. 18 (1), 30 (1982). DOI: 10.1049/el:19820022
  9. M.V. Parfenov, A.V. Shamrai, Tech. Phys. Lett., 46 (8), 819 (2020). DOI: 10.1134/S1063785020080258
  10. M. Bazzan, C. Sada. Appl. Phys. Rev., 2 (4), 040603 (2015). DOI: 10.1063/1.4931601
  11. X. Guan, H. Hu, L.K. Oxenl we, L.H. Frandsen. Opt. Express, 26 (2), 1055 (2018). DOI: 10.1364/OE.26.001055
  12. H.H. Li. J. Phys. Chem. Ref. Data, 9, 561 (1980). DOI: 10.1063/1.555624
  13. M. Parfenov, P. Agruzov, I. Ilichev, A. Shamray. J. Phys.: Conf. Ser., 741 (1), 012141 (2016). DOI: 10.1088/1742-6596/741/1/012141
  14. J. Van Roey, J. van der Donk, P.E. Lagasse. J. Opt. Soc. Am., 71 (7), 803 (1981). DOI: 10.1364/JOSA.71.000803

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru