Asymptotic stage of self-catalyzed growth of III-V nanowires by molecular beam epitaxy
Dubrovskii V. G.1, Rylkova M. V.1, Sokolovskii A. S.1, Sokolova Zn. V.1,2
1St. Petersburg State University, St. Petersburg, Russia
2Saint Petersburg State University of Economics, St. Petersburg, Russia
Email: dubrovskii@mail.ioffe.ru
A new analytic theory is developed for asymptotic stage of self-catalyzed growth of III-V nanowires (NWs) by molecular beam epitaxy (MBE), where NWs collect all group III atoms deposited from vapor. The shadowing NW length is derived which corresponds for the full shadowing of the substrate surface in MBE. The NW length and radius are derived depending on the effective deposition thickness and MBE growth parameters. It is shown that the NW length increases, and their length decreases with decreasing the array pitch and increasing the V/III flux ratio. Keywords: II-V nanowires, shadowing effect, length, radius, surface density, modeling
- A. Zhang, G. Zheng, C.M. Lieber, Nanowires: building blocks for nanoscience and nanotechnology (Springer, 2016)
- F. Glas, Phys. Rev. B, 74, 121302(R) (2006). DOI: 10.1103/PhysRevB.74.121302
- V.G. Dubrovskii, N.V. Sibirev, X. Zhang, R.A. Suris, Cryst. Growth Des., 10, 3949 (2010). DOI: 10.1021/cg100495b
- G.E. Cirlin, V.G. Dubrovskii, V.N. Petrov, N.K. Polyakov, N.P. Korneeva, V.N. Demidov, A.O. Golubok, S.A. Masalov, D.V. Kurochkin, O.M. Gorbenko, N.I. Komyak, V.M. Ustinov, A.Yu. Egorov, A.R. Kovsh, M.V. Maximov, A.F. Tsatusul'nikov, B.V. Volovik, A.E. Zhukov, P.S. Kop'ev, Zh.I. Alferov, N.N. Ledentsov, M. Grundmann, D. Bimberg, Semicond. Sci. Technol., 13, 1262 (1998). DOI: 10.1088/0268-1242/13/11/005
- R.S. Wagner, W.C. Ellis, Appl. Phys. Lett., 4, 89 (1964). DOI: 10.1063/1.1753975
- C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A. Fontcuberta i Morral, Phys. Rev. B, 77, 155326 (2008). DOI: 10.1103/PhysRevB.77.155326
- S. Hertenberger, D. Rudolph, M. Bichler, J.J. Finley, G. Abstreiter, G. Koblmuller, J. Appl. Phys., 108, 114316 (2010). DOI: 10.1063/1.3525610
- V.G. Dubrovskii, F. Glas, in: Fundamental properties of semiconductor nanowires, ed by N. Fukata, R. Rurali (Springer, 2020), p. 3-107. DOI: 10.1007/978-981-15-9050-4_1
- N.V. Sibirev, M. Tchernycheva, M.A. Timofeeva, J.C. Harmand, G.E. Cirlin, V.G. Dubrovskii, J. Appl. Phys., 111, 104317 (2012). DOI: 10.1063/1.4718434
- G.E. Cirlin, V.G. Dubrovskii, N.V. Sibirev, I.P. Soshnikov, Y.B. Samsonenko, A.A. Tonkikh, V.M. Ustinov, Semiconductors, 39 (5), 557 (2005). DOI: 10.1134/1.1923565
- M.C. Plante, R.R. LaPierre, J. Appl. Phys., 105, 114304 (2009). DOI: 10.1063/1.3131676
- S.J. Gibson, R.R. LaPierre, Nanotechnology, 25, 415304 (2014). DOI: 10.1088/0957-4484/25/41/415304
- F. Oehler, A. Cattoni, A. Scaccabarozzi, J. Patriarche, F. Glas, J.C. Harmand, Nano Lett., 18, 701 (2018). DOI: 10.1021/acs.nanolett.7b03695
- V.G. Dubrovskii, I.P. Soshnikov, G.E. Cirlin, A.A. Tonkikh, Yu.B. Samsonenko, N.V. Sibirev, V.M. Ustinov, Phys. Status Solidi B, 241, R30 (2004). DOI: 10.1002/pssb.200409042
- F. Glas, Phys. Status Solidi B, 247, 254 (2010). DOI: 10.1002/pssb.200945456
- V.G. Dubrovskii, Nanomaterials, 11, 2378 (2021). DOI: 10.3390/nano11092378
- F. Glas, M.R. Ramdani, G. Patriarche, J.C. Harmand, Phys. Rev. B, 88, 195304 (2013). DOI: 10.1103/PhysRevB.88.195304
- J. Tersoff, Nano Lett., 15, 6609 (2015). DOI: 10.1021/acs.nanolett.5b02386
- V.G. Dubrovskii, Cryst. Growth Des., 17, 2544 (2017). DOI: 10.1021/acs.cgd.7b00076
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.