Degradation of InGaN/GaN quantum well UV LEDs caused by short-term exposure to current
Ivanov A. M.1, Klochkov A. V.1
1Ioffe Institute, St. Petersburg, Russia
Email: alexandr.ivanov@mail.ioffe.ru, alex.klo@mail.ioffe.ru
A comparative analysis of the initial stages of degradation of ultraviolet and blue LED structures with InGaN/GaN quantum wells is carried out. In the mode of accelerated aging, the structures were subjected to short-term, sequential exposure to currents of 80-190 mA at forward bias. The exposure time did not exceed three hours. There was an increase (up to 20%) in the external quantum efficiency. The most probable physical mechanisms explaining the changes in InGaN/GaN LEDs are presented and possible ways to slow down the aging of UV LEDs are outlined. Keywords: Degradation of ultraviolet light-emitting diodes, increase in quantum efficiency, slowing down the aging.
- J. Glaab, J. Haefke, J. Ruschel, M. Brendel, J. Rass, T. Kolbe, A. Knauer, M. Weyers, S. Einfeldt, M. Guttmann, C. Kuhn, J. Enslin, T. Wernicke, M. Kneissl. J. Appl. Phys., 123, 104502 (2018). DOI: 10.1063/1.5012608
- J. Glaab, J. Ruschel, T. Kolbe, A. Knauer, J. Rass, H.K. Cho, N. Lobo Ploch, S. Kreutzmann, S. Einfeldt, M. Weyers, M. Kneissl. IEEE Photonics Technol. Lett., 31 (7), 529 (2019). DOI: 10.1109/LPT.2019.2900156
- H. Xiu, Y. Zhang, J. Fu, Z. Ma, L. Zhao, J. Feng. Curr. Appl. Phys., 19, 20 (2019). DOI: 10.1016/j.cap.2018.10.019
- Z. Ma, A. Almalki, X. Yang, X. Wu, X. Xi, J. Li, S. Lin, X. Li, S. Alotaibi, M. Al huwayz, M. Henini, L. Zhao. J. Alloys Compd., 845, 156177 (2020). DOI: 10.1016/j.jallcom.2020.156177
- Z. Ma, H. Cao, S. Lin, X. Li, L. Zhao. Solid State Electron., 156, 92 (2019). DOI: 10.1016/j.sse.2019.01.004
- D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni., J. Glaab, J. Rass, S. Einfeldt, F. Mehnke, J. Enslin, T. Wernicke, M. Kneissl. IEEE Trans. Electron Devices, 64 (1), 200 (2017). DOI: 10.1109/TED.2016.2631720
- M. Meneghini, D. Barbisan, Y. Bilenko, M. Shatalov, J. Yang, R. Gaska, G. Meneghesso, E. Zanoni. Microelectron. Reliab., 50, 1538 (2010). DOI: 10.1016/j.microrel.2010.07.089
- A.L. Zakheim, M.E. Levinshtein, V.P. Petrov, A.E. Chernyakov, E.I. Shabunina, N.M. Shmidt. Semicond., 46 (2), 208 (2012). DOI: 10.1134/S106378261202025X
- A. Pinos, S. Marcinkeviv cius, M.S. Shur. J. Appl. Phys., 109, 103108 (2011). DOI: 10.1063/1.3590149
- Z. Gong, M. Gaevski, V. Adivarahan, W. Sun, M. Shatalov, M. Asif Khan. Appl. Phys. Lett., 88, 121106 (2006). DOI: 10.1063/1.2187429
- J. Ruschel, J. Glaab, B. Beidoun, N.L. Ploch, J. Rass, T. Kolbe, A. Knauer, M. Weyers, S. Einfeldt, M. Kneissl. Photonics Res., 7 (7), B36 (2019). DOI: 10.1364/PRJ.7.000B36
- H. Dong, T. Jia, J. Liang, A. Zhang, Z. Jia, W. Jia, X. Liu, G. Li, Y. Wu, B. Xu. Opt. Laser Technol., 129, 106309 (2020). DOI: 10.1016/j.optlastec.2020.106309
- J. Huang, W. Liu, L. Yi, M. Zhou, D. Zhao, D. Jiang. Superlattices Microstruct., 113, 534 (2018). DOI: 10.1016/j.spmi.2017.11.036
- L. Wang, W. He, T. Zheng, Z. Chen, S. Zheng. Superlattices Microstruct., 133, 106188 (2019). DOI: 10.1016/j.spmi.2019.106188
- M.R. Kwon, T.H. Park, T.H. Lee, B.R. Lee, T.G. Kim. Superlattices Microstruct., 116, 215 (2018). DOI: 10.1016/j.spmi.2018.02.033
- N. Liu, H. Gu, Y. Wei, S. Zheng. Superlattices Microstruct., 141, 106492 (2020). https://doi.org/10.1016/j.spmi.2020.106492
- X. Wang, H.-Q. Sun, Z.-Y. Guo. Opt. Mater., 86, 133 (2018). DOI: 10.1016/j.optmat.2018.09.037
- R.K. Mondal, V. Chatterjee, S. Pal. Opt. Mater., 104, 109846 (2020). DOI: /10.1016/j.optmat.2020.109846
- W. Guo, F. Xu, Y. Sun, L. Lu, Z. Qin, T. Yu, X. Wang, B. Shen. Superlattices Microstruct., 100, 941 (2016). http://dx.doi.org/10.1016/j.spmi.2016.10.070
- Q. Wang, L. He, L. Wang, C. Li, C. He, D. Xiong, D. Lin, J. Wang, N. Liu, Z. Chen, M. He. Opt. Commun., 478, 126380 (2021). DOI: 10.1016/j.optcom.2020.126380
- Y. Zhang, L. Yu, K. Li, H. Pi, J. Diao, X. Wang, Y. Shen, C. Zhang, W. Hu, W. Song, S. Li. Superlattices Microstruct., 82, 151 (2015). DOI: 10.1016/j.spmi.2015.02.004
- L. Wang, G. Li, W. Song, H. Wang, X. Luo, Y. Sun, B. Zhang, J. Jiang, S. Li. Superlattices Microstruct., 122, 608 (2018). DOI: 10.1016/j.spmi.2018.06.039
- A.M. Ivanov. Tech. Phys., 66 (1), 71 (2021). DOI: 10.1134/S1063784221010114
- N. Renso, C. De Santi, A. Caria, F. Dalla Torre, L. Zecchin, G. Meneghesso, E. Zanoni, M. Meneghini. J. Appl. Phys., 127, 185701 (2020). DOI: 10.1063/1.5135633
- F. Piva, C. De Santi, M. Deki, M. Kushimoto, H. Amano, H. Tomozawa, N. Shibata, G. Meneghesso, E. Zanoni, M. Meneghini. Microelectron. Reliab., 100--101, 113418 (2019). DOI: 10.1016/j.microrel.2019.113418
- T. Yu, S. Shang, Z. Chen, Z. Qin, L. Lin, Z. Yang, G. Zhang. J. Lumin., 122--123, 696 (2007). DOI: 10.1016/j.jlumin.2006.01.263
- M. Buffolo, C. De Santi, M. Meneghini, D. Rigon, G. Meneghesso, E. Zanoni. Microelectron. Reliab., 55, 1754 (2015). http://dx.doi.org/10.1016/j.microrel.2015.06.098
- J. Fu, L. Zhao, H. Cao, X. Sun, B. Sun, J. Wang, J. Li. AIP Adv. 6, 055219 (2016). http://dx.doi.org/10.1063/1.4953056
- I.N. Yassievich. Semicond. Sci. Technol. 9, 1433 (1994)
- M. La Grassa, M. Meneghini, C. De Santi, E. Zanoni, G. Meneghesso. Microelectron. Reliab., 64, 614 (2016). DOI: 10.1016/j.microrel.2016.07.131
- N.I. Bochkareva, A.M. Ivanov, A.V. Klochkov, V.A. Tarala, Y.G. Shreter. Tech. Phys. Lett., 42 (11), 1099 (2016). DOI: 10.1134/S1063785016110146
- S.Yu. Karpov. Opt. Quantum Electron. 47, 1293 (2015). DOI: 10.1007/s11082-014-0042-9
- Q. Lv, J. Gao, X. Tao, J. Zhang, C. Mo, X. Wang, C. Zheng, J. Liu. J. Lumin., 222, 117186 (2020). DOI: 10.1016/j.jlumin.2020.117186
- P. Sahare, B.K. Sahoo. Mater. Today: Proceedings, 28, 74 (2020). DOI: 10.1016/j.matpr.2020.01.303
- N. Trivellin, D. Montia, C. De Santia, M. Buffoloa, G. Meneghessoa, E. Zanonia, M. Meneghinia. Microelectron. Reliab., 88--90, 868 (2018). DOI: 10.1016/j.microrel.2018.07.145
- M. Meneghini, N. Trivellin, K. Orita, S. Takigawa, M. Yuri, T. Tanaka, D. Ueda, E. Zanoni, G. Meneghesso. IEEE Electron Device Lett., 30 (4), 356 (2009). DOI: 10.1109/LED.2009.2014570
- J. Hu, L. Yang, M.W. Shin. J. Phys. D: Appl. Phys., 41, 035107 (2008). http://dx.doi.org/10.1088/0022-3727/41/3/035107
- D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni, A. Bojarska, P. Perlin. Microelectron. Reliab., 76--77, 584 (2017). DOI: 10.1016/j.microrel.2017.06.043
- M. Meneghini, G. Meneghesso, N. Trivellin, E. Zanoni, K. Orita, M. Yuri, D. Ueda. IEEE Electron Device Lett., 29 (6), 578 (2008). DOI: 10.1109/LED.2008.921098
- N.I. Bochkareva, Y.G. Shreter. Semicond., 52 (7), 934 (2018). DOI: 10.1134/S1063782618070035
- N.I. Bochkareva, A.M. Ivanov, A.V. Klochkov, Y.G. Shreter. J. Phys.: Conf. Ser., 1697, 012203 (2020). DOI: 10.1088/1742-6596/1697/1/012203
- D. Zhu, J. Xu, A. Noemaun, J. Kim, E. Schubert, M. Crawford, D. Koleske. Appl. Phys. Lett., 94, 081113 (2009). DOI: 10.1063/1.3089687
- M. Osinski, D.L. Barton. In coll.: Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, ed. by S. Nakamura, S.F. Chichibu. (CRC Press, 2000), p. 386. ISBN 9780748408368
- I-H. Lee, A.Y. Polyakov, S-M. Hwang, N.M. Shmidt, E.I. Shabunina, N.A. Tal'nishnih, N.B. Smirnov, I.V. Shchemerov, R.A. Zinovyev, S.A. Tarelkin, S.J. Pearton. Appl. Phys. Lett., 111, 062103 (2017). http://dx.doi.org/10.1063/1.4985190
- H.R. Qi, S. Zhang, S.T. Liu, F. Liang, L.K. Yi, J.L. Huang, M. Zhou, Z.W. He, D.G. Zhao, D.S. Jiang. Superlattices Microstruct., 133, 106177 (2019). DOI: 10.1016/j.spmi.2019.106177
- Q. Xu, S. Zhang, B. Liu, T. Tao, Z. Xie, X. Xiu, D. Chen, P. Chen, P. Ha, Y. Zheng, R. Zhang. Superlattices Microstruct., 119, 150 (2018). DOI: 10.1016/j.spmi.2018.04.053
- A.V. Mazalov, D.R. Sabitov, V.A. Kureshov, A.A. Padalitsa, A.A. Marmalyuk, R.Kh. Akchurin. Mod. Electron. Mater., 2, 45 (2016). http://dx.doi.org/10.1016/j.moem.2016.09.003
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.