Luminescence properties of non-stoichiometric lithium niobate crystals of various composition and genesis (review)
Smirnov M. V.
1, Sidorov N. V.
1, Palatnikov M. N.
11Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences», Apatity, Russia
Email: m.smirnov@ksc.ru
A brief review of the features of the defect structure and studies of the luminescent properties of nonlinear optical lithium niobate crystals of various compositions and genesis was given. It was established that the electron-hole pair NbNb4+-O- in the oxygen-octahedral cluster NbO6 emitted in the short-wavelength region of the visible spectrum (400-500 nm), while point defects (VLi and NbNb4+-NbLi4+ bipolarons) - in the long-wavelength region (500-620 nm). At the ratio of Li/Nb~ 1 the luminescence was extinguished in the visible region of the spectrum due to decreasing the intrinsic luminescence centers. It was shown that the presence of polaron luminescence in the near-IR region (700-1050 nm) was due to the small polarons NbLi4+ and impurity ions Cr3+ localized in lithium and niobium octahedra. The energy transfer between the luminescence centers in the visible and near-IR spectral regions was detected. Moreover, luminescence in near-IR regions was dominant. Doping of LiNbO3 crystals with zinc and magnesium at ZnO <4.46 mol.% and MgO <5.29 mol.% led to decreasing luminescence of intrinsic defects (VLi, NbNb4+-NbLi4+). However, there was an increase of the contribution of the short-wave spectrum component at higher dopant concentrations because of the introduction of Zn and Mg into the origin positions of Nb ions. Keywords: lithium niobate single crystal, point defects, luminescence, luminescence centers.
- Yu.S. Kuz'minov. Elektrooptichesky i nelineyno-optichesky kristall niobata litiya (Nauka, M., 1987), p. 9-24 (in Russian)
- M.N. Palatnikov, N.V. Sidorov, O.V. Makarova, I.V. Biryukova. Fundamentalnye aspekty tekhnologii sil?no legirovannykh kristallov niobata litiya (Apatity: KNTs RAN, 2017) (in Russian)
- Venkatraman Gopalan, T.E. Mitchell, Y. Furukawa, K. Kitamura. Appl. Phys. Lett., 72 (16), 1981 (1998). DOI: 10.1063/1.121491
- N.V. Sidorov, N.A. Teplyakova, L.A. Bobreva, M.N. Palatnikov. J. Struct. Chem., 60 (11), 1765 (2019). DOI: 10.1134/S002247661911009X
- N.V. Sidorov, A.A. Kruk, N.A. Teplyakova, A.A. Yanichev, M.N. Palatnikov, O.Y. Pikoul. Opt. Spectr., 118 (2), 259 (2015). DOI: 10.1134/S0030400X15020174
- N.A. Teplyakova, N.V. Sidorov, M.N. Palatnikov. Perspektivnye materialy, 4, 19 (2016) (in Russian)
- Yuinlin Chen, Weiguo Yan, Juan Guo, Shaolin Chen, Guangyin Zhang. Appl. Phys. Lett., 87 (21), 212904 (2005). DOI: 10.1063/1.2135389
- S. Kumaragurubaran, S. Takekawa, M. Nakamura, S. Ganesamoorthy, K. Terabe, K. Kitamura. In: Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), p. 393
- V.Ya. Shur, E.L. Rumyantsev, R.G. Bachko, G.D. Miller, M.M. Feyer, R.L. Bayer. FTT, 41 (10), 1831 (1999) (in Russian)
- Donghwa Lee, Venkatraman Gopalan, S.R. Phillpot. Appl. Phys. Lett., 109 (8), 082905 (2016). DOI: 10.1063/1.4961614
- V. Kemlin, D. Jegouso, J. Debray, E. Boursier, P. Segonds, B. Boulanger, H. Ishizuki, T. Taira, G. Mennerat, J.-M. Melkonian, A. Godard. Opt. Express, 21 (23), 28886 (2013). DOI: 10.1364/OE.21.028886
- Kaili Zhai, Shuanggen Zhang, Xiurong Ma, Youjian Song, Minglie Hu, Qingyue Wang, Kailiang Zhang. IEEE Photonics J., 8 (2), 7802307 (2016). DOI: 10.1109/JPHOT.2016.2536364
- Dong Zhou Wang, De Hui Sun, Xue Liang Kang, Yuan Hua Sang, Bo Xia Yan, Hong Liu, Yong Bi. Opt. Express, 23 (14), 17727 (2015). DOI: 10.1364/OE.23.017727
- T.R. Volk, L.S. Kokhanchik, R.V. Gainutdinov, Y.V. Bodnarchuk, S.D. Lavrov. J. Adv. Dielect., 8 (2), 1830001 (2018). DOI: 10.1142/S2010135X18300013
- L. Arizmendi. Phys. Stat. Sol. A, 20 (2), 253 (2004). DOI: 10.1002/pssa.200303911
- S.C. Abrahams, P. Marsh. Acta. Cryst., B42, 61 (1986). DOI: 10.1107/S0108768186098567
- A.P. Wilkinson, A.K. Cheerham, R.H. Jarman. J. Appl. Phys., 74 (5), 3080 (1993). DOI: 10.1063/1.354572
- G. Dominial-Dzik, W. Ryba-Romanowski, M.N. Palatnikov, N.V. Sidorov, V.T. Kalinnikov. J. Mol. Struct., 704 (1), 139 (2004). DOI: 10.1016/j.molstruc.2004.01.063
- W. Ryba-Romanowski, I. Sokolska, G. Dominiak-Dzik, S. Golab. J. Alloys and Compounds, 300 (2), 152 (2000). DOI: 10.1016/S0925-8388(99)00715-X
- W. Ryba-Romanowski, S. Golab, G. Dominiak-Dzik, M.N. Palatnikov, N.V. Sidorov. Appl. Phys. Lett., 78 (23), 3610 (2001). DOI: 10.1063/1.1376660
- R. Lisiecki, B. Macalik, R. Kowalski, J. Komar, W. Ryba-Romanowski. Crystals, 10|,(11), 1034 (2020). DOI: 10.3390/cryst10111034
- Li Dai, Shunxiang Yang, Ruirun Chen, Chunrui Liu, Xianbo Han, Yu Shao. J. Luminescence, 217, 116773 (2020). DOI: 10.1016/j.jlumin.2019.116773
- M.N. Palatnikov, N.V. Sidorov, I.V. Biryukova, O.B. Shcherbina, V.T. Kalinnikov. Perspektivnye materialy, 2, 93 (2011) (in Russian)
- N.V. Sidorov, A.A. Yanichev, M.N. Palatnikov, A.A. Gabain. Opt. Spectr., 116 (2), 281 (2014). DOI: 10.1134/S0030400X14010202
- N.V. Sidorov, T.R. Volk, B.N. Mavrin, V.T. Kalinnikov. Niobat litiya: defekty, fotorefraktsiya, kolebatelny spektr, polyaritony (Nauka, M., 2003) (in Russian)
- N. Zotov, H. Boysen, F. Frey, T. Metzger, E. Born. J. Phys. Chem. Solids, 55 (2), 145 (1994). DOI: 10.1016/0022-3697(94)90071-X
- Homer Fay, W.J. Alford, H.D. Dess. Appl. Phys. Lett., 12 (3), 89 (1968). DOI: 10.1063/1.1651911
- P. Lerner, C. Legras, J.P. Dumas. J. Cryst. Growth, 3 (4), 231 (1968). DOI: 10.1016/0022-0248(68)90139-5
- L. Kovacs, K. Polgar. Cryst. Res. Technol., 21 (6), K101 (1986)
- N. Iyi, K. Kitamura, F. Izumi, J.K. Yamamoto, T. Hayashi, H. Asano, S. Kimura. J. Sol. Stat. Chem., 101 (2), 340 (1992). DOI: 10.1016/0022-4596(92)90189-3
- H.J. Donnerberg, S.M. Tomlinson, C.R.A. Catlow. J. Phys. Chem. Solids, 52 (1), 201 (1991). DOI: 10.1016/0022-3697(91)90065-8
- G.E. Peterson, A. Carnevale. J. Chemical Physics, 56 (10), 4848 (1972). DOI: 10.1063/1.1676960
- F.P. Safaryan, R.S. Feigelson, A.M. Petrosyan. J. Appl. Phys., 85 (12), 8079 (1999). DOI: 10.1063/1.370645
- R.M. Araujo, K. Lengyel, R.A. Jackson, L. Kovacs, M.E.G. Valerio. J. Phys.: Condens. Matter., 19, 046211 (2007). DOI: 10.1088/0953-8984/19/4/046211
- F. Abdi, M.D. Fontana, M. Aillerie, P. Bourson. Appl. Phys. A, 83, 427 (2006). DOI: 10.1007/s00339-006-3565-5
- K. Maaider, N. Masaif, A. Khalil. Indian J. Phys., 95, 275 (2021). DOI: 10.1007/s12648-020-01696-5
- Yongfa Kong, Jingjun Xu, Xiaojun Chen, Cunzhou Zhang, Wanlin Zhang, Guangyin Zhang. J. Appl. Phys., 87 (9), 4410 (2000). DOI: 10.1063/1.373085
- N.V. Sidorov, B.N. Mavrin, P.G. Chufyrev, M.N. Palatnikov. Fononnye spektry monokristallov niobata litiya (Izdatelstvo Kol?skogo naychnogo tsentra RAN, Apatity, 2012) (in Russian)
- N.V. Sidorov, N.A. Teplyakova, A.A. Yanichev, M.N. Palatnikov, O.V. Makarova, L.A. Aleshina, A.V. Kadetova. Inorganic materials, 53 (5), 489 (2017). DOI: 10.1134/S002016851705017X
- K. Lengyel, A. Peter, L. Kovacs, G. Corradi, L. Palfavi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, K. Polgar. Appl. Phys. Rev., 2 (4), 040601 (2015)
- F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, M. Wohlecke. Appl. Phys. B, 68, 795 (1999). DOI: 10.1007/s003409901469
- T. Volk, B. Maximov, T. Chernaya, N. Rubinina, M. Wohlecke, V. Simonov. Appl. Phys. B, 72 (6), 647 (2001). DOI: 10.1007/s003400100548
- A.V. Kadetova. Vliyanie legirovaniya na strukturnye osobennosti niobata litiya: dis. ... magistra po napravleniyu "Elektronika i nanoelektronika" (PetrGU, Petrozavodsk, 2018) (in Russian)
- J.J. Amodei, D.L. Staebler. Appl. Phys. Lett., 18, 540 (1971). DOI: 10.1063/1.1653530
- D. von der Linde, A.M. Glass, K.F. Rodgers. Appl. Phys. Lett., 25 (3), 155 (1974). DOI: 10.1063/1.1655420
- Ye Ming, E. Kratzig, R. Orlowski. Phys. Stat. Sol. A, 92 (1), 221 (1985). DOI: 10.1002/pssa.2210920121
- L. Tsarukyan, R. Hovsepyan, R. Drampyan. Photonics and Nanostructures --- Fundamentals and Applications, 40, 100793 (2020). DOI: 10.1016/j.photonics.2020.100793
- J.E. Midwinter, J. Warner. J. Appl. Phys., 38 (2), 519 (1967). DOI: 10.1063/1.1709367
- A. Hordvik, H. Schlossberg. Appl. Phys. Lett., 20 (5), 197 (1972). DOI: 10.1063/1.1654106
- [N.V. Sidorov, M.V. Smirnov, M.N. Palatnikov. J. Appl. Spectrosc., 87 (2), 212 (2020). DOI: 10.1007/s10812-020-00986-4]
- A. Harhira, L. Guilbert, P. Bourson, H. Rinnert. Phys. Stat. Sol. C, 4 (3), 926 (2007). DOI: 10.1002/pssc.200673755
- A. Krampf, S. Messerschmidt, M. Imlau. Scientific Reports, 10, 11397 (2020). DOI: 10.1038/s41598-020-68376-6
- C. Fischer, M. Wohlecke, T. Volk, N. Rubinina. Phys. Stat. Sol. A, 137 (1), 247 (1993). DOI: 10.1002/pssa.2211370122
- F. Klose, M. Wohlecke, S. Kapphan. Ferroelectrics, 92 (1), 181 (1989). DOI: 10.1080/00150198908211324
- T.P.J. Han, F. Jaque, V. Bermudez, E. Diefuez. Chem. Phys. Lett., 369 (5-6), 519 (2003). DOI: 10.1016/S0009-2614(02)02028-6
- M.G. Clark, F.J. DiSalvo, A.M. Glass, G.E. Peterson. J. Chem. Phys., 59 (12), 6209 (1973). DOI: 10.1063/1.1680000
- M.V. Ciampolillo, M. Bazzan, C. Sada, N. Argiolas, A. Zaltron, E. Cattaruzza, S. Mignoni, P. Bourson, M.D. Fontana, M. Bianconi. Ferroelectrics, 389 (1), 142 (2009). DOI: 10.1080/00150190902993275
- L.E. Halliburton, K.L. Sweeney, C.Y. Chen. Nuclear Instruments and Methods in Physics Research B, 1 (2-3), 344 (1984). DOI: 10.1016/0168-583X(84)90090-9
- D.M. Krol, G. Blasse, R.C. Powell. J. Chem. Phys., 73 (1), 163 (1980). DOI: 10.1063/1.439901
- J. Llopis, C. Ballesteros, R. Gonzalez, Y. Chen. J. Appl. Phys., 56 (2), 460 (1984). DOI: 10.1063/1.333932
- N.V. Sidorov, M.V. Smirnov, M.N. Palatnikov, V.B. Pikulev. Opt. i spektr., 129 (5), 634 (2021) (in Russian). DOI: 10.21883/OS.2021.05.50891.248-20
- Richard C. Powell, Edwin E. Freed. J. Chem. Phys., 70 (10), 4681 (1979). DOI: 10.1063/1.437253
- E.V. Stroganova. Issledovanie, sintez i vyrashchivanie opticheskikh gradientno-aktivirovannykh kristallov na osnove niobata litiya. Avtoref. dokt. dis. (FGBOU VO "Kubansky gosudarstvenny universitet", Krasnodar, 2017) (in Russian). URL: http://docspace.kubsu.ru/docspace/handle/1/1059
- V.V. Galutskii, E.V. Stroganova, N.A. Yakovenko. Opt. Spectrosc. 110 (3), 401 (2011). DOI: 10.1134/S0030400X10061049
- V. Trepakov, A. Skvortsov, S. Kapphan, L. Jastrabik, V. Vorlcek. Ferroelectrics, 239 (1), 297 (2000). DOI: 10.1080/00150190008213335
- P. Bourson, M. Aillerie, M. Cochez, M. Ferriol, Y. Zhang, L. Guilbert. Optical Materials, 24 (1-2), 111 (2003). DOI: 10.1016/S0925-3467(03)00113-7
- H.-J. Reyher, R. Schulz, O. Thiemann. Phys. Rev. B, 50 (6), 3609 (1994). DOI: 10.1103/PhysRevB.50.3609
- H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Rauber. Appl. Phys., 12 355 (1977). DOI: 10.1007/BF00886038
- O.F. Schirmer, D. von der Linde. Appl. Phys. Lett., 33, 35 (1978). DOI: 10.1063/1.90181
- G. Blasse, A. Bril. J. Electrochem. Soc., 115 (10), 1067 (1968). DOI: 10.1149/1.2410880
- G. Blasse, L.G.J. De Haart. Materials Chemistry and Physics, 14 (5), 481 (1986). DOI: 10.1016/0254-0584(86)90050-7
- O.F. Schirmer. J. Phys.: Condens. Matter, 18, R667 (2006). DOI: 10.1088/0953-8984/18/43/R01
- O.F. Schirmer, O. Thiemann, M. Wohlecke. J. Phys. Chem. Solids, 52 (1), 185 (1991). DOI: 10.1016/0022-3697(91)90064-7
- P. Reichenbach, T. Kampfe, A. Haub mann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovacs, Lukas M. Eng. Crystals, 8 (5), 214 (2018). DOI: 10.3390/cryst8050214
- L. Arizmendi, J.M. Cabrera, F. Agullo-Lopez. J. Phys. C: Solid State Phys., 17, 515 (1984). DOI: 10.1088/0022-3719/17/3/021
- P. Reichenbach, T. Kampfe, A. Thiessen, M. Schroder, A. Haub mann, T. Woike, L.M. Eng. J. Appl. Phys., 115 (21), 213509 (2014). DOI: 10.1063/1.4881496
- L. Arizmendi, J.M. Cabrera, F. Agullo-Lopez. Solid State Commun., 40 (5), 583 (1981). DOI: 10.1016/0038-1098(81)90579-2
- T. Kampfe, A. Haub mann, L.M. Eng. Phys. Rev. B, 93 (17), 174116 (2016). DOI: 10.1103/PhysRevB.93.174116
- S. Messerschmidt, A. Krampf, F. Freytag, M. Imlau, L. Vittadello, M. Bazzan, G. Corradi. J. Phys.: Condens. Matter, 31 (6), 065701 (2018). DOI: 10.1088/1361-648X/aaf4df
- M.H.J. Emond, M. Wiegel, G. Blasse, R. Feigelson. Mat. Res. Bull., 28 (10), 1025 (1993). DOI: 10.1016/0025-5408(93)90140-9
- M.V. Smirnov, N.V. Sidorov, M.N. Palatnikov, V.B. Pikulev. Trudy Kol?skogo naychnogo tsentra, 10 (3), 323 (2019) (in Russian)
- V.A. Golenishchev-Kutuzov, A.V. Golenishchev-Kutuzov, R.I. Kalimullin, A.V. Semennikov, V.A. Ulanov. Izvestiya RAN. Seriya fizicheskaya, 84 (12), 1754 (2020) (in Russian). DOI: 10.31857/S0367676520120212
- V.Yu. Yakovlev, E.V. Kabanova, T. Weber, P. Paufleur. FTT, 43 (8), 1520 (2001) (in Russian)
- I.Sh. Akhmadullin, V.A. Golenishchev-Kutuzov, S.A. Migachev. FTT, 40 (6), 1109 (1998) (in Russian)
- J. Koppitz, O.F. Schirmer, A.I. Kuznetsov. Europhys. Lett., 4 (9), 1055 (1987). DOI: 10.1209/0295-5075/4/9/017
- J.G. Murillo, G. Herrera, A. Vega-Rios, S. Flores-Gallardo, A. Duarte-Moller, J. Castillo-Torres. Optical materials, 62, 639 (2016). DOI: 10.1016/j.optmat.2016.10.059
- V.M. Fridkin. Segnetoelektriki --- poluprovodniki (Nauka, M., 1976) (in Russian)
- Yanl Li, Lili Li, Xiufeng Cheng, Xian Zhao. J. Phys. Chem. C, 121 (16), 8969 (2017). DOI: 10.1021/acs.jpcc.7b01274
- T. Moss, G. Burrell, B. Ellis. Poluprovodnikovaya optoelektronika, perevod s angliyskogo A.A. Gippiusa, A.N. Kovaleva, pod red. S.A. Medvedeva. (Mir, M., 1976) (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.