Vibrational Spectroscopic and Molecular Docking Studies of Amrinone, a Cardiotonic Inotropic Drug
Celik Sefa1, Akyuz Sevim2, Ozel Aysen E.1, Akalin Elif1
1Physics Department, Science Faculty, Istanbul University, Vezneciler, Istanbul, Turkey
2Physics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, Bakirkoy, Istanbul, Turkey
Email: scelik@istanbul.edu.tr

PDF
Amrinone is a class I cardiotonic inotropic agent, which is known to increase the cyclic adenosine monophosphate (cAMP) level by inhibiting the phosphodiesterase 3 (PDE3) enzyme. In this study the theoretically possible stable conformations of the amrinone, was examined first by conformational analysis method and then the obtained most stable conformation was optimized by DFT/wb97xd/6-311++G(d,p) level of theory using Gaussian 03 program. The credibility of the theoretical model was confirmed by comparison of experimental and theoretical vibrational spectra of the title molecule. The fundamental vibrational wavenumbers, IR and Raman intensities of the optimized structure of amrinone were determined using DFT/wb97xd/6-311++G(d,p) level of theory and compared with the experimental vibrational spectra. To investigate the influence of amrinone on cAMP enhancement, the docking simulations towards PDE3B were carried out and the main binding interactions of amrinone with PDE3 were elucidated. Cytochrome P450s (CYPs) are very important phase I metabolizing enzymes.The interaction between amrinone and CYPs (CYP1A2, CYP2C9 and CYP2C19) was investigated by docking simulations. Moreover, molecular docking of the title molecule with different proteins and receptors were studied to reveal potential mechanisms for therapeutic applications. Molecular docking simulations revealed that amrinone showed strong binding affinity to integrins α5β1 (Delta G= - 6.6 kcal/mol) and αIIbβ3 (-6.6 kcal/mol), and DNA (-6.5 kcal/mol). The results correlated with its anticancer activity. The drug likeness and ADMET properties of amrinone were analyzed for the prediction of pharmacokinetic profiles. Key words: amrinone, DFT calculations, FTIR, molecular docking, ADMET.
  1. R.S. Vardanyan, V.J. Hruby. Synthesis of Essential Drugs, Ch. 17 (Elsevier, 2006). doi.org/10.1016/B978-0-444-52166-8.X5000-6
  2. M. Asif, North American J. Med. Sci. 4(10),499 (2012)
  3. G. Pastelin, R. Mendez, E. Kabela, A. Farah. Life Sci. 33 (18), 1787 (1983)
  4. D.W. Robertson, E.E. Beedle, J.K. Swartzendruber, N.D. Jones, T.K. Elzey, R.F. Kauffman, H. Wilson, J.S. Hayes. J. Med. Chem. 29 (5), 635 (1986)
  5. H.J. Hofmann, R. Cimiraglia. Eur. J. Med. Chem. 22 (6), 569 (1987)
  6. V. Cody. Acta Crystallographica C 43 (7), 1325 (1987)
  7. A. Esme. Indian J. Pure \& Appl. Phys. 55 (7), 478 (2017)
  8. Y. Shao, L.F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S.T. Brown, R.A. Di Stasio Jr. Phys. Chem. Chem. Phys. 8 (27), 3172 (2006)
  9. M.J.E.A. Frisch, G.W. Trucks, H. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman et al. (2004). Gaussian 03, revision c. 02; Gaussian. Inc., Wallingford, CT, 4
  10. A.D. Becke. J. Chem. Phys. 98 (7), 5648 (1993)
  11. P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs, A. Vargha. J. Am. Chem. Soc. 105 (24), 7037 (1983)
  12. T. Sundius. J. Mol. Str. 218, 321(1990)
  13. T. Sundius. Vibr. Spectr. 29 (1), 89 (2002)
  14. K. Istvan, (2002). SIMIRRA --- program for simulation of IR and Raman spectra. Budapest: Chemical Research Center. (It was obtained from Dr. Gabor Keresztury in Chemical Research Center in Budapest)
  15. G. Scapin, S.B. Patel, C. Chung, J.P. Varnerin, S.D. Edmondson, A. Mastracchio et al., Biochemistry 43 (20), 6091 (2004)
  16. H.R. Drew, R.M. Wing, T. Takano, C. Broka, S. Tanaka, K. Itakura, R.E. Dickerson. Proc. National Acad. Sci. 78 (4), 2179 (1981)
  17. W. Xia, T.A. Springer. Proc. National Acad. Sci. 111 (50), 17863 (2014)
  18. J. Zhu, J. Zhu. J. Cell Biol. 201 (7), 1053 (2013)
  19. S. Sansen, J.K. Yano, R.L. Reynald, G.A. Schoch, K.J. Griffin, C.D. Stout, E.F. Johnson. J. Biol. Chem. 282 (19), 14348 (2007)
  20. M.R. Wester, J.K. Yano, G.A. Schoch, C. Yang, K.J. Griffin, C.D. Stout, E.F. Johnson. J. Biol. Chem. 279 (34), 35630 (2004)
  21. R.L. Reynald, S. Sansen, C.D. Stout, E.F. Johnson. J. Biol. Chem. 287 (53), 44581 (2012)
  22. O. Trott, A.J. Olson. J. Comp. Chem. 31 (2), 455 (2010)
  23. A. Jurcik, D. Bednar, J. Byska, S.M. Marques, K. Furmanova, L. Daniel, P. Kokkonen, J. Brezovsky, O. Strnad, J. Stourac, A. Pavelka, M. Manak, J. Damborsky, B. Kozlikova. Bioinformatics, 34, 3586 (2018)
  24. OSIRIS. (2010). OSIRIS Property Explorer. Actelion Pharmaceuticals Ltd. http://www.organic-chemistry.org/prog/peo/
  25. F. Cheng, W. Li, Y. Zhou, J. Shen, Z. Wu, G. Liu, P.W. Lee, Y. Tang, J. Chem. Inf. Model. 52 (11), 3099 (2012)
  26. A.K. Bhattacharjee. Proc. Indian Acad. Sei. (Chem Sci.) 102 (2), 159 (1990)
  27. H.D. Arman, P. Poplaukhin, E.R. Tiekink. Acta Crystallographica E 65 (12), o3187 (2009)
  28. S. Castillo, J. Favrot, T. Bouissou, J.F. Brazier, M.T. Boisdon, A. Zwick. Spectrochimica Acta A, 50 (6), 1121 (1994)
  29. T. Nakanaga, F. Ito, J. Miyawaki, K. Sugawara, H. Takeo. Chem. phys. lett. 261 (4-5), 414(1996)
  30. J.C. Evans. Spectrochimica Acta 16(4), 428(1960)
  31. Z. Niu, K.M. Dunn, J.E. Boggs. Molecular Physics 55 (2), 421 (1985)
  32. L. Corrsin, B.J. Fax, R.C. Lord. J. Chem. Phys. 21 (7), 1170 (1953)
  33. R.G. Pearson. Hard and soft acids and bases. V. 2 (Van Nostrand Reinhold, NY, 1973)
  34. N.M. O'boyle, A.L. Tenderholt, K.M. Langner. J. Comp. Chem. 29 (5), 839 (2008)
  35. A. Atilgan, S. Yurdakul, Y. Erdogdu, M.T. Gulluo.lu. J. Mol. Struct. 1161, 55(2018)
  36. D.R. Martins, F. Pazini, V. de Medeiros Alves, S.S. de Moura, L.M. Liao, M.T.Q. de Magalhaes et al., Chem. Pharm. Bull. 61 (5), 524(2013)
  37. C. Kontogiorgis, O. Nicolotti, G.F. Mangiatordi, M. Tognolini, F. Karalaki, C. Giorgio et al. J. Enz. Inh. Med. Chem. 30 (6), 925(2015)
  38. U.M. Zanger, M. Schwab. Pharmacol. Therapeut. 138 (1), 103 (2013)
  39. Z. Bibi. Nutr. Metabol. 5, 27 (2008)
  40. A.M. McDonnell, C.H. Dang. J. Adv. Pract. Oncol. 4 (4), 263 (2013)
  41. J. Shao, J. Chen, T. Li, X. Zhao. Molecules 19, 4760 (2014)
  42. Q.B. Wang, W. Di, X.L. Cheng, P.H. Zhang, Z.L. Tu. Herald Med. 5, 500 (2008)
  43. K.T. Savjani, A.K. Gajjar, J.K. Savjani, Int. Schol. Res. Not. 2012 (2012). DOI: 10.5402/2012/195727
  44. S. Hardjono, S. Siswandono, R. Andayani, Indones. J. Biotechnol. 22 (2), 76 (2017)
  45. S. Maloy, K. Hughes, (Eds.) Brenner's encyclopedia of genetics (Academic Press, 2013)
  46. P. Wexler. Encyclopedia of Toxicology (Academic Press, 2014)
  47. S. Brem, K.G. Abdullah. Glioblastoma (Elsevier, 2017)
  48. L. Malric, S. Monferran, J. Gilhodes, S. Boyrie, P. Dahan, N. Skuli, J. Sesen, T. Filleron, A. Kowalski-Chauvel, E.C.J. Moyal, C. Toulas, A. Lemarie, Oncotarget 8, 86947 (2017)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru