Radar absorbing and shielding characteristics in ferrite-polymer composites Mn-Zn ferrite/P (TFE-VDF)
Shakirzyanov R.I.1, Isaev I.M.1, Kostishin V.G.1, Kayumova A.R.1, Olitsky V. K.1, Salogub D.V.1
1National University of Science and Technology MISiS, Moscow, Russia
Email: drvgkostishyn@mail.ru, isa@misis.ru, kayumova.ad@gmail.com, olv.vlad@yandex.ru, salogub.dmitry@yandex.ru

PDF
The article discusses the electromagnetic absorbing and shielding properties of ferrite-polymer composites of the composition Mn-Zn ferrite/fluoroplast-42, obtained by pressing a mixture of powders with heating. The measurement of the complex magnetic and dielectric permittivity spectra, as well as the reflection coefficient spectra was carried out in the frequency range 0.1-7 GHz. Using the obtained spectra, a comprehensive analysis of the absorbing characteristics of the composites was carried out, and the factors responsible for the absorption were determined. Fitting of the composites magnetic permeability spectra show that the process of natural ferromagnetic resonance prevails over the resonance of domain walls, and a decrease in the concentration of ferrite inclusions leads to a significant shift in the frequency of natural ferromagnetic resonance to high frequencies. It was found that for composites with a thickness of 5-10 mm, compositions with a mass fraction of ferrite ≤0.4 show radio-absorbing properties, while compositions with a fraction of ≥0.6 show shielding properties. Keywords: polymer composite, magnetic properties, radio absorption, feromagnetic resonance, polyvinylidene fluoride, manganese-zinc ferrite.
  1. Yu.M. Spodobaev, V.P. Kubanov. Osnovy elektromagnitnoi ekologii (Radio i svyaz, M., 2000) (in Russian)
  2. P. Thakur, D. Chahar, S. Taneja N. Bhalla,A. Thakur. Ceram. Int., 46, 15740 (2020). DOI: 10.1016/j.ceramint.2020.03.287
  3. D. Kumar, A. Moharana, A. Kumar. Mater. Today Chem., 17, 100346 (2020). DOI: 10.1016/j.mtchem.2020.100346
  4. X. Zeng, X. Cheng, R. Yu, G.D. Stucky. Carbon, 168, 606 (2020). DOI: 10.1016/J.Carbon.2020.07.028
  5. K. Shimada, K. Ishizuka, M. Tokuda. Progr. In Electromagnetics Research Symposium (Cambridge, USA, 2006, March 26--29), p. 538
  6. V.G. Kostishin, R.M. Vergazov, S.B. Men'shova, I.M. Isaev, A.V. Timofeev. Zavodskaya laboratoriya. Diagnostika materialov, 87 (1), 30 (2021) (in Russian). DOI: 10.26896/1028-6861-2021-87-1-30-34
  7. V.G. Kostishin, R.M. Vergazov, S.B. Men'shova, I.M. Isaev. Ross. tekhnol. zhurn., 8 (6), 87 (2020) (in Russian). DOI: 10.32362/2500-316X-2020-8-6-87-108
  8. I.M. Isaev, V.G. Kostishin, V.V. Korovushkin, D.V. Salogub, R.I. Shakirzyanov, A.V. Timofeev, A.Yu. Mironovich. ZhTF, 91 (9), 1376 (2021) (in Russian). DOI: 10.21883/JTF.2021.09.51217.74-21
  9. M.A. Almessiere, Y. Slimani, A.V. Trukhanov A. Baykal, H. Gungunes,E.L. Trukhanova,S.V. Trukhanov, V.G. Kostishin. J. Ind. Eng. Chem., 90, 251 (2020). DOI: 10.1016/j.jiec.2020.07.020
  10. A. Poorbafrani, E. Kiani. J. Magn. Magn. Mater., 416, 10 (2016). DOI: 10.1016/j.jmmm.2016.04.046
  11. Y. Liu, S.C. Wei, Y.J. Wang, H.L. Tian, H. Tong, B.S. Xu. Phys. Procedia, 50, 43 (2013). DOI: 10.1016/j.phpro.2013.11.009
  12. N.N. Ali, R.A.B. Al-Marjeh, Y. Atassi, A. Salloum, A. Malki, M. Jafarian. J. Magn. Magn. Mater., 453, 53 (2018). DOI: 10.1016/j.jmmm.2018.01.014
  13. P. Saha, T. Debnath, S. Das, S. Chatterjee, S. Sutradhar. Mater. Sci. Eng. B, 245, 17 (2019). DOI: 10.1016/j.mseb.2019.05.006
  14. R.I. Shakirzyanov, V.G. Kostishyn, A.T. Morchenko, I. Isaev, V. Kozlov, V. Astakhov. Russ. J. Inorg. Chem., 65 (6), 829 (2020). DOI: 10.1134/S0036023620060194
  15. V.V. Kochervinskii. Bull. Russ. Acad. Sci.: Phys., 84 (2), 144 (2020). DOI 10.3103/S106287382002015X
  16. A.V. Lopatin, N.E. Kazantseva, Yu.N. Kazantsev, O.A. D'yakonova, J. Vilv cakova, P. Saha. J. Comm. Technol. Electron., 53 (5), 487 (2008). DOI: 10.1134/S106422690805001X
  17. E.V. Yakushko, L.V. Kozhitov, D.G. Muratov, et al. Russ. Phys. J., 63 (12), 2226 (2021). DOI: 10.1007/s11182-021-02292-8
  18. M. Saini, R. Shukla, A. Kumar. J. Magn. Magn. Mater., 491, 165549 (2019). DOI: 10.1016/j.jmmm.2019.165549
  19. N. Gill, A. L. Sharma, V. Gupta, M. Tomar, O.P. Pandey, D.P. Singh. J. Alloys Compd. 797, 1190 (2019). DOI: 10.1016/j.jallcom.2019.05.176
  20. D. C. Jenn. Radar and Laser Cross Section Engineering (AIAA, 1995), DOI: 10.2514/4.105630
  21. C. Sun, C. Cheng, M. Sun, Z. Zhang. J. Magn. Magn. Mater., 482, 79 (2019). DOI: 10.1016/j.jmmm.2019.03.034
  22. P. Thakur, D. Chahar, S. Taneja, N. Bhalla,A. Thakur. Ceram. Int., 46 (10), 15740 (2020). DOI: 10.1016/j.ceramint.2020.03.287
  23. V.V. Kochervinskii. Russ. Chem. Rev., 65 (10), 865 (1996). DOI: 10.1070/RC1996v065n10ABEH000328
  24. N.A. Poklonskiy, N.I. Gorbachuk. Osnovy impedansnoi spektroskopii kompositov: kurs lektsiy (BGU, Minsk, 2005) (in Russian)
  25. D. Ravinder, K. Latha. J. Appl. Phys., 75, 6118 (1994). DOI: 10.1063/1.355479
  26. V.A. Astakhov, R.I. Shakirzyanov, A.T. Morchenko, et al., J. Nano-Electron. Phys., 8 (3), 03044 (2016). DOI: 10.21272/jnep.8(3).03044
  27. A.T. Morchenko. Bull. Russ. Acad. Sci.: Phys., 78 (11), 1209 (2014). DOI: 10.3103/S1062873814110203
  28. T. Tsutaoka. J. Appl. Phys. 93, 2789 (2003) DOI: 10.1063/1.1542651
  29. V. Babayan, N.E. Kazantseva, R. Mouv cka, I. Sapurina, Yu.M. Spivak,V.A. Moshnikov. J. Magn. Magn. Mater., 324, 161 (2012). DOI: 10.1016/j.jmmm.2011.08.002
  30. B. Wang, J. Wei, L. Qiao, T. Wang, F. Li. J. Magn. Magn. Mater., 324, 761 (2012). DOI: 10.1016/j.jmmm.2011.09.011

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru