Structure and properties of composites based on aluminum and gallium nitrides grown on silicon of different orientations with a buffer layer of silicon carbide
Sharofidinov Sh. Sh.
1, Kukushkin S. A.
2, Staritsyn M. V.
3, Solnyshkin A. V.
4, Sergeeva O. N.
4, Kaptelov E. Yu.
1, Pronin I. P.
11Ioffe Institute, St. Petersburg, Russia
2Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
3Central Research Institute of Structural Materials Prometey, National Research Centre Kurchatov Institute, St. Petersburg, Russia
4Tver State University, Tver, Russia
Email: culkand@gmail.com, sergey.a.kukushkin@gmail.com, ms_145@mail.ru, a.solnyshkin@mail.ru, o_n_sergeeva@mail.ru, Kaptelov@mail.ioffe.ru, Petrovich@mail.ioffe.ru
The microstructure and pyroelectric properties of AlxGa1-xN composite epitaxial layers grown on SiC/Si(111) and SiC/Si(110) hybrid substrates by the chloride-hydride epitaxy have been studied. The phenomenon of spontaneous formation of a system of heterojunctions consisting of periodic AlxGa1-xN layers of different composition located perpendicular to the direction of growth, was discovered during the growth of layers. Measurements of the pyroelectric coefficients of these heterostructures have shown that regardless of the orientation of the initial Si substrate and their pyroelectric coefficients have close values of the order of γ~(0.7-1)·10-10 C/cm2K. It is shown that to increase the magnitude of the pyroresponse it is necessary to deposit an AlN layer with a thickness exceeding 1 μm on the AlxGa1-xN/SiC/Si surface. This leads to record values of the pyroelectric coefficient γ~18·10-10 C/cm2K for AlN crystals and films. Keywords: silicon carbide-on-silicon substrates, chloride-hydride epitaxy, AlGaN epitaxial layers, aluminum nitride, gallium nitride, pyroelectric properties.
- S. Nakamura, T. Mukai, M. Senoh. Appl. Phys. Lett. 64, 1687 (1994)
- S. Guha, N.A. Bojarczuk. Appl. Phys. Lett. 72, 415 (1998)
- M. Kneissl, Zh. Yang, M. Teepe, C. Knollenberg, O. Schmidt, P. Kiesel, N.M. Johnson, S. Schujman, L.J. Schowalter. J. Appl. Phys. 101, 123103 (2007)
- S. Keller, C.S. Suh, Z. Chen, R. Chu, S. Rajan, N.A. Fichtenbaum, M. Furukawa, S.P. DenBaars, J.S. Speck, U.K. Mishra. J. Appl. Phys. 103, 033708 (2008)
- P. Dong, J.-C. Yan, J.-X. Wang, Y. Zhang, C. Geng, T.-B. Wei, P.-P. Cong, Y.-U. Zhang, J.-P. Zeng, Y.-D. Tian, L. Sun, Q.F. Yan, J.-M. Li, S.-F. Fan, Z.-X. Qin. Appl. Phys. Lett. 102, 241113 (2013)
- W. Guo, Z. Bryan, J.-Q. Xie, R. Kirste, S. Mita, I. Bryan, L. Hussey, M. Bobea, B. Haidet, M. Gerhold, R. Collazo, Z. Sitar. J. Appl. Phys. 115, 103108 (2014)
- K. Lee, R. Page, V. Protasenko, L.J. Schowalter, M. Toita, H.G. Xing, D. Jena. Appl. Phys. Lett. 118, 092101 (2021)
- S.A. Kukushkin, A.V. Osipov. Phys. Solid State 50, 7, 1238 (2008). DOI: 10.1134/S1063783408070081
- S.A. Kukushkin, A.V. Osipov. J. Phys. D 47, 31, 313001 (2014)
- S.A. Kukushkin, A.V. Osipov, N.A. Feoktistov. Phys. Solid State 56, 1507 (2014). DOI: 10.1134/S1063783414080137
- V.N. Bessolov, Yu.V. Zhilyaev, E.V. Konenkova, L.M. Sorokin, N.A. Feoktistov, Sh.Sh. Sharofidinov, M.P. Shcheglov, S.A. Kukushkin, L.I. Mets, A.V. Osipov. Tech. Phys. Lett., 36, 6, 496 (2010) DOI: 10.1134/S1063785010060039
- V.N. Bessolov, Yu.V. Zhilyaev, E.V. Konenkova, L.M. Sorokin, N.A. Feoktistov, Sh.Sh. Sharofidinov, M.P. Shcheglov, S.A. Kukushkin, L.I. Mets, A.V. Osipov. J. Opt. Technol. 78, 435 (2011). https://doi.org/10.1364/JOT.78.000435
- S.A. Kukushkin, Sh.Sh. Sharofidinov. Phys. Solid State 61, 2342 (2019). DOI: 10.1134/S1063783419120254
- K. Fujito, Sh. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, S. Nagao. J. Cryst. Growth 311, 10, 3011 (2009)
- J.A. Freitas, J.C. Culbertson, N.A. Mahadik, T. Sochacki, M. Iwinska, M.S. Bockowski. J. Cryst. Growth 456, 113 (2016)
- P. Muralt. Rep. Prog. Phys. 64, 1339 (2001)
- P. Muralt. J. Am. Ceram. Soc. 91, 5, 1385 (2008)
- M.S. Shur. Noise in devices and circuits III. Proc. SPIE, 5844, 248 (2005)
- S.Yu. Davydov, O.V. Posrednik, FTT 58, 4, 630 (2019) (in Russian)
- L. Natta, V.M. Mastronardi, F. Guido, L. Algieri, S. Puce, F. Pisano, F. Rizzi, R. Pulli, A. Qualtieri, M. De Vittorio. Sci. Rep. 9, 8392 (2019)
- O.N. Sergeeva, A.A. Bogomolov, A.V. Solnyshkin, N.V. Komarov, S.A. Kukushkin, D.M. Krasovitsky, A.L. Dudin, D.A. Kiselev, S.V. Ksenich, S.V. Senkevich, E.Yu. Kaptelov I.P. Pronin. Ferroelectrics 477, 121 (2015)
- G.E. Stan, M. Botea, G.A. Boni, I. Pintilie, L. Pintilie. Appl. Surf. Sci. 353, 1195 (2015)
- O.N. Sergeeva, A.V. Solnyshkin, D.A. Kiselev, T.S. Il'ina, S.A. Kukushkin, A.V. Osipov, Sh.Sh. Sharofidinov, E.Yu. Kaptelov, I.P. Pronin. Phys. Solid State 61, 2386 (2019). DOI: 10.1134/S1063783419120485
- S.A. Kukushkin, Sh.Sh. Sharofidinov, A.V. Osipov, A.S. Grashchenko, A.V. Kandakov, E.V. Osipova, K.P. Kotlyar, E.V. Ubyivovk, Phys. Solid State 63, 442 (2021). DOI: 10.1134/S1063783421030100
- A.V. Solnyshkin, O.N. Sergeeva, O.A. Shustova, Sh.Sh. Sharofidinov, M.V. Staritsyn, E.Yu. Kaptelov, S.A. Kukushkin, I.P. Pronin. Tech. Phys. Lett., 47, 5, 426 (2021). DOI: 10.1134/S1063785021050138
- O.A. Shustova, O.N. Sergeeva, A.V. Solnyshkin, I.T. Zezianov, E.Yu. Kaptelov, I.P. Pronin, Sh.Sh. Sharofudinov, S.A. Kukushkin. Ferroelectrics 591, 121 (2022).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.