Razhev A M1, Kargapol`tsev E. S.1, Trunov I. A.1
1Institute of Laser Physics of the Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
Email: djohn797@mail.ru
An efficient pulsed gas-discharge inductive CO2-laser with a radiation energy of 1.05 J has been developed for the first time. In this case, the pulse duration of the laser radiation was about 10 msec. The maximum efficiency of 21.1% was obtained at a radiation energy of 340 mJ. HF current pulses propagated along the inductor conductor and, thus, an inductive discharge was formed to create a population inversion at the infrared (IR) transitions of CO2* molecules. The temporal and energy characteristics of the radiation of the inductive CO2-laser depending on the duration of the pump pulse are investigated. The spatial characteristics and spectrum of the radiation of the developed laser are estimated. The divergence of the laser radiation was 0.52 mrad. The cross-sectional dimension of the laser output beam was about 35 mm in diameter. Keywords: inductive discharge in a mixture of gases, high-frequency modulation of the pump voltage, population inversion, output characteristics of laser radiation.
- W.E. Bell. Applied Physics Letters, 7 (7), 190 (1965). DOI: 10.1063/1.1754372
- J.P. Goldsborough, E.B. Hodges, W.E. Bell. Appl. Phys. Lett., 8 (6), 137 (1966). DOI: 10.1063/1.1754523
- O.S. Akirtava, A.M. Bogus, V.L. Dzhikiya, Yu.M. Oleinik. Soviet J. Quantum Electron., 3 (6), 519 (1974). DOI: 10.1070/QE1974v003n06ABEH005653
- A.M. Razhev, V.M. Mkhitaryan, D.S. Churkin. J. Exper. Theor. Phys. Lett., 82, 259(2005). DOI: 10.1134/1.2130908
- A.M. Razhev, D.S. Churkin. J. Exper. Theor. Phys. Lett., 86, 420 (2007). DOI: 10.1134/S0021364007180154
- A.M. Razhev, D.S. Churkin, A.A. Zhupikov. Proc. SPIE, 6346, 634603-1 (2007). DOI: 10.1117/12.738795
- A.M. Razhev, A.A. Zhupikov, D.S. Churkin. Proc. SPIE, 6938, 693803-1 (2008). DOI: 10.1117/12.785605
- A.M. Razhev, D.S. Churkin. Opt. Commun., 282, 1354 (2009). DOI: 10.1016/j.optcom.2008.12.035
- A.M. Razhev, D.S. Churkin. Optics and Precision Engineering, 19 (2), 237 (2011). DOI: 10.3788/ope.20111902.1021
- A.M. Razhev, D.S. Churkin, E.S. Kargapol'tsev. Electrical \& Electronic Systems, 2 (2), 1000112 (2013). DOI: 10.4172/2332-0796.1000112
- A.M. Razhev, D.S. Churkin, E.S. Kargapol'tsev. In: 6th Intern. Symposium on Modern Problems of Laser Physics (MPLP'2013). 2013, p. 140
- A.M. Razhev, D.S. Churkin, E.S. Kargapol'tsev. Laser Physics, 24 (7), 074004 (2014). DOI: 10.1088/1054-660X/24/7/074004
- C.K.N. Patel, W.L. Faust, R.A. Mc Farlane. Bull. Am. Phys. Soc., 9, 500 (1964)
- N.N. Sobolev, V.V. Sokovikov. J. Exper. and Theor. Phys. Lett., 4 (8), 204 (1966)
- A.M. Razhev, D.S. Churkin, R.A. Tkachenko. Applied Physics B (Lasers and Optics), 126 (6), Article id104 (2020). DOI: 10.1007/s00340-020-07459-8
- A.M. Razhev, D.S. Churkin, E.S. Kargapol'tsev. Laser Physics Letters, 10 (7), 075002, 1 (2013). DOI: 10.1088/1612-2011/10/7/075002
- A.M. Razhev, D.S. Churkin, E.S. Kargapol'tsev, S.V. Demchuk. Quantum Electronics, 46 (3), 210 (2016). DOI: 10.1070/QEL15990
- A. M. Razhev, D. S. Churkin, A.S. Zavyalov. Vestnik NGU (Series: Fizika, 4 (3), 12 (2009) (in Russian)
- A.M. Razhev, D.S. Churkin, R.A. Tkachenko. Optika atmosfery i okeana, 33 (3), 169 (2020) (in Russian). DOI: 10.15372/AOO20200302
- A.M. Razhev, D.S. Churkin, E.S. Kargapol'tsev, R.A. Tkachenko, I.A. Trunov. Optika atmosfery i okeana, 33 (3), 173 (2020) (in Russian). DOI: 10.15372/AOO20200303
- A.M. Razhev, D.S. Churkin, R.A. Tkachenko. Applied Physics B (Lasers and Optics), 127 (11), Article id152 (2021). DOI: 10.1007/s00340-021-07698-3
- A.M. Razhev, D.S. Churkin, R.A. Tkachenko. Laser Physics Letters, 18 (9), 095001 (2021). DOI: 10.1088/1612-202X/ac1609.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.