New optical method to study oxygen activity in flowing liquid
Davydov P. V.1, Logunov S. E. 1,2, Dudkin V. I. 2, Davydov V. V.1
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2Bonch-Bruevich St. Petersburg State University of Telecommunications, St. Petersburg, Russia

PDF
The necessity to study the oxygen activity of aqueous media in the flowing state to solve various problems has been substantiated. It has been found that emitted γ-quanta as a result of decay of 16N nuclei with energy more than 9 MeV cause the formation of additional color centers and reversible optical defects in the fiber. Their appearance leads to increased radiation-induced losses in the optical fiber, which reduce the power of laser radiation transmitted through it. A new optical method has been developed that makes it possible to study the nature of oxygen activity change by the number of γ-quanta emitted by 16N nuclei when the liquid moves along the pipeline. For the first time, the nature of the change in the spectral distribution of the number of 16N nuclei emitted as a result of oxygen activity was investigated, and its features in the current flow were determined. In order to realize long-term studies of oxygen activity, a method was proposed to restore optical properties of fiber in the presence of background radioactive radiation. Keywords:
  1. I.I. Semidotskiy, S.N. Antonov, V.A. Zhitelev, N.P. Kotov, V.M. Makhin, B.V. Kebadze, V.A. Shurupov. Atomnaya energiya, 110 (5), 262 (2011) (in Russian)
  2. S.V. D'yachenko, A.I. Zhernovoi. Technical Physics,61 (12), 1835 (2016). DOI: 10.1134/S1063784216120112
  3. D.L. Griscom. Optic Materials Express, 1 (3), 400 (2011). DOI: 10.1364/OME.1.000400
  4. V.V. Davydov, N.S. Myazin, A.V. Kiryukhin. Atomic Energy, 127 (5), 274 (2020). DOI: 10.1007/s10512-020-00623-5
  5. L.V. Abramov, A.V. Baklanov, A.M. Bakhmetiev. Atomnaya energiya, 129 (2), 105 (2020) (in Russian)
  6. A.P. Sorokin, Yu.A. Kuzina. Atomnaya energiya, 128 (5), 259 (2020) (in Russian)
  7. S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, C. Marcandella. IEEE Transactions on Nuclear Science, 60 (3), 2015 (2013). DOI: 10.1109/TNS.2012.2235464
  8. V.I. Dudkin, V.Yu. Petrunkin, S.V. Rubinov, L.I. Uspenskiy. Fizika tverdogo tela, 26 (1), 1296 (1986) (in Russian)
  9. P.F. Kashaykin, A.L. Tomashuk, M.Yu. Salganskiy, I.S. Azanova, M.K. Tsibinogina, T.V. Dimakova, A.N. Gurianov, E.M. Dianov. Zhurnal tekhnicheskoy fiziki, 89 (5), 752 (2019) (in Russian). DOI: 10.21883/JTF.2019.05.47480.123-18
  10. P.F. Kashaykin, A.L. Tomashuk, M.Y. Salgansky, A.N. Guryanov, E.M. Dianov, J. Appl. Phys., 121 (21), 213104 (2017). DOI: 10.1063/1.4984601
  11. A.L. Tomashuk, M.O. Zabezhailov. J. Appl. Phys., 10 (8), 083103 (2011). DOI: 10.1063/1.3561435
  12. J. Wen, G.-D. Peng, W. Luo, Z. Chen, T. Wang. Optics Express, 19 (23), 23271 (2011). DOI: 10.1364/OE.19.023271
  13. Y. Kim, S. Ju, S. Jeong, S.H. Lee, W.-T. Han. Optics Express, 24 (4), 3910 (2016). DOI: 10.1364/OE.24.003910
  14. S.V. Firstov et al. Quantum Electronics, 47 (12), 1120 (2017). DOI: 10.1070/QEL16521
  15. D.S. Dmitrieva, V.M. Pilipova, V.I. Dudkin, V.V. Davydov, V.Y. Rud. J. Phys.: Conference Series,1697 (1), 012145 (2020). DOI: 10.1088/1742-6596/1697/1/012145
  16. D.S. Dmitrieva, V.M. Pilipova, V.Y. Rud. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),12526 LNCS, 348 (2020). DOI: 10.1007/978-3-030-65729-1_30
  17. R.V. Davydov, D.S. Dmitrieva, V.M. Pilipova, V.I. Dudkin, E.I. Andreeva. In: Proc. of 18 th IEEE International Conference Laser Optics 2020 (IEEE, 2020), p. 243. DOI: 10.1109/ICLO48556.2020.9285820
  18. L. Dong, V.N. Bagratashvili, S.I. Tsypina, Y.S. Zavorotny, A.O. Rybaltovskii, P.V. Chernov, S.S. Alimpiev, Y.O. Simanovskii. Jap. J. Appl. Phys., 37 (51), 12 (1998). DOI: 10.7567/JJAPS.37S1.12
  19. A.M. El-Sayed et al. Phys. Rev. B, 89 (12), 125201 (2014). DOI: 10.1103/PhysRevB.89.125201
  20. D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Kunzner, F. Koch. Phys. Rev. B, 61 (7), 4485 (2000). DOI: 10.1103/PhysRevB.61.4485
  21. N. Daldosso, M. Melchiorri, L. Pavesi, G. Pucker, F. Gourlilleau, S. Chausserie, Y. Ali Belarouci, X. Portier, C. Dufour. J. Lumin., 121 (2), 344 (2006). DOI: 10.1016/j.jlumin.2006.08.083
  22. A.O. Rybaltovskiy, A.A. Ischenko, Y.S. Zavorotny, A.V. Garshev, S.G. Dorofeev, N.N. Kononov, N.V. Minaev, S.A. Minaeva, S.P. Sviridov, P.S. Timashev, I.I. Khodos, V.I. Yusupov, M.A. Lazov, V.Ya. Panchenko, V.N. Bagratashvili. J. Materials Science, 50 (5), 2247 (2015). DOI: 10.1007/s10853-014-8787-x
  23. M.Ya. Marusina, B.A. Bazarov, A.A. Silaev, N.P. Marusin, E.Yu. Zakemovskaya, A.G. Gilev, A.V. Alekseev. Izmeritelnaya tekhnika, 4, 62 (2014)
  24. Z.A. Dayev, L.N. Latyshev. Flow Measurement and Instrumentation,56 (1), 18 (2017). DOI: 10.1016/j.flowmeasinst.2017.07.001
  25. R. Looney, J. Priede. Flow Measurement and Instrumentation, 65 (1), 128 (2019). DOI: 10.1016/j.flowmeasinst.2018.11.019
  26. G.N. Akhobadze. Izmeritelnaya tekhnika, 5, 30 (2020) (in Russian). DOI: 10.32446/0368-1025it.2020-5-30-35

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru