Spectral emissivity of technical titanium near the melting point
Kosenkov D.V.1, Sagadeev V.V.1
1Kazan National Research Technological University, Kazan, Republic of Tatarstan, Russian
Email: Dmi-kosenkov@yandex.ru

PDF
An experimental study of the normal spectral emission ability of technical titanium grade VT1-00 in the melting region was carried out. The scheme of the upgraded direct vision radiometer with replaceable narrow-band dispersion filters of the spectral range 0.69-10.9 μm. is given. The estimation of the possibility of calculating the emission capacity of titanium according to electromagnetic theory is carried out.. Keywords: normal spectral emissivity, melting region, wavelength, titanium.
  1. A. Donchev, H.-E. Zschau. Mater. Corrosion, 55, 556 (2004). DOI: 10.1002/maco.200490059
  2. R. Bedford, G. Bonnier, H. Maas, F. Pavese. Metrologia, 33, 133 (1996). DOI: 10.1088/0026-1394/33/2/3
  3. D.V. Kosenkov, V.V. Sagadeev, V.A. Alyaev. Thermophys. Aeromechan., 28 (6), 951 (2021)
  4. D.V. Kosenkov, V.V. Sagadeev, V.A. Alyaev. Tech. Phys., 66 (7), 1063 (2021)
  5. G. Teodorescu, P. Jones, R. Overfelt, B. Guo. In High Temperature Emissivity of High Purity Titanium and Zirconium. In: Proceedings of the Sixteenth Symposium on Thermophysical Properties, 2006
  6. E.A. Belskaya, N.Ya. Isaeva. TVT, 24 (5), 884 (1986)
  7. Y.S. Touloukian, D.P. DeWitt. Thermal Radiative pPoperties: Metallic Elements and Alloys. Vol. 7, Thermophysical Properties of Matter, ed. by Y.S. Touloukian, C.Y. Ho (IFI/Plenum, NY., 1970)
  8. G. Pottlacher, K. Boboridis, C. Cagran, T. Hupf, A. Seifter, B. Wilthan. AIP Conf. Proceed., 1552, 704 (2013). DOI: 10.1063/1.4819628
  9. A. Cezairliyan, J.L. McClure, A.P. Miiller. Int. J. Thermophys., 15, 993 (1994). DOI: 10.1007/BF01447109
  10. S. Kumar, S.V. Krishnamurthy, K. Balasubramaniam. 10.21611/qirt.2019.048, (2019)
  11. A. Cezairliyan, A.P. Miiller. J. Res. Natl. Bur. Stand., 82, 119 (1977)
  12. T. Ishikawa, C. Koyama, Y. Nakata, Y. Watanabe, P.-F. Paradis. J. Chem. Thermodyn., 131, 557 (2019)
  13. M. Watanabe, M. Adachi, H. Fukuyama. J. Molec. Liquids, 324 (2021). DOI: 10.1016/j.molliq.2020.115138
  14. Thermal Radiation Heat Transfer, ed. by R. Siegel, J.R. Howell (Hemisphere publ. corp., Washington, 2000)
  15. K. Boboridiss. Intern. J. Thermophys., 23, 277 (2002). DOI: 10.1023/A:1013977732267
  16. B. Wilthan, C. Cagran, G. Pottlacher. Intern. J. Thermophys., 26, 1017 (2005). DOI: 10.1007/s10765-005-6682-z
  17. H. Watanabe, M. Susa, H. Fukuyama, K. Nagata. Intern. J. Thermophys., 24, 223 (2003). DOI: 10.1023/A:1022374501754
  18. D.Ya. Svet. Opticheskie metody izmereniya istinnykh temperatur (Nauka, M., 1982)
  19. P. Herve, A. Sadou. Infrared Phys. Technol., 51, 249 (2008). DOI: 10.1016/j.infrared.2007.07.002
  20. L.N. Latyev, V.Ya. Chekhovskoi, E.N. Shestakov. Phys. Stat. Sol., 38 (2), K149 (1970)
  21. H. Watanabe, M. Susa, K. Nagata. Metallurgical and Materials Transactions A, 28, 2507 (1997). DOI: 10.1007/s11661-997-0008-7

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru