Spectral emissivity of technical titanium near the melting point
Kosenkov D.V.1, Sagadeev V.V.1
1Kazan National Research Technological University, Kazan, Republic of Tatarstan, Russian
Email: Dmi-kosenkov@yandex.ru
An experimental study of the normal spectral emission ability of technical titanium grade VT1-00 in the melting region was carried out. The scheme of the upgraded direct vision radiometer with replaceable narrow-band dispersion filters of the spectral range 0.69-10.9 μm. is given. The estimation of the possibility of calculating the emission capacity of titanium according to electromagnetic theory is carried out.. Keywords: normal spectral emissivity, melting region, wavelength, titanium.
- A. Donchev, H.-E. Zschau. Mater. Corrosion, 55, 556 (2004). DOI: 10.1002/maco.200490059
- R. Bedford, G. Bonnier, H. Maas, F. Pavese. Metrologia, 33, 133 (1996). DOI: 10.1088/0026-1394/33/2/3
- D.V. Kosenkov, V.V. Sagadeev, V.A. Alyaev. Thermophys. Aeromechan., 28 (6), 951 (2021)
- D.V. Kosenkov, V.V. Sagadeev, V.A. Alyaev. Tech. Phys., 66 (7), 1063 (2021)
- G. Teodorescu, P. Jones, R. Overfelt, B. Guo. In High Temperature Emissivity of High Purity Titanium and Zirconium. In: Proceedings of the Sixteenth Symposium on Thermophysical Properties, 2006
- E.A. Belskaya, N.Ya. Isaeva. TVT, 24 (5), 884 (1986)
- Y.S. Touloukian, D.P. DeWitt. Thermal Radiative pPoperties: Metallic Elements and Alloys. Vol. 7, Thermophysical Properties of Matter, ed. by Y.S. Touloukian, C.Y. Ho (IFI/Plenum, NY., 1970)
- G. Pottlacher, K. Boboridis, C. Cagran, T. Hupf, A. Seifter, B. Wilthan. AIP Conf. Proceed., 1552, 704 (2013). DOI: 10.1063/1.4819628
- A. Cezairliyan, J.L. McClure, A.P. Miiller. Int. J. Thermophys., 15, 993 (1994). DOI: 10.1007/BF01447109
- S. Kumar, S.V. Krishnamurthy, K. Balasubramaniam. 10.21611/qirt.2019.048, (2019)
- A. Cezairliyan, A.P. Miiller. J. Res. Natl. Bur. Stand., 82, 119 (1977)
- T. Ishikawa, C. Koyama, Y. Nakata, Y. Watanabe, P.-F. Paradis. J. Chem. Thermodyn., 131, 557 (2019)
- M. Watanabe, M. Adachi, H. Fukuyama. J. Molec. Liquids, 324 (2021). DOI: 10.1016/j.molliq.2020.115138
- Thermal Radiation Heat Transfer, ed. by R. Siegel, J.R. Howell (Hemisphere publ. corp., Washington, 2000)
- K. Boboridiss. Intern. J. Thermophys., 23, 277 (2002). DOI: 10.1023/A:1013977732267
- B. Wilthan, C. Cagran, G. Pottlacher. Intern. J. Thermophys., 26, 1017 (2005). DOI: 10.1007/s10765-005-6682-z
- H. Watanabe, M. Susa, H. Fukuyama, K. Nagata. Intern. J. Thermophys., 24, 223 (2003). DOI: 10.1023/A:1022374501754
- D.Ya. Svet. Opticheskie metody izmereniya istinnykh temperatur (Nauka, M., 1982)
- P. Herve, A. Sadou. Infrared Phys. Technol., 51, 249 (2008). DOI: 10.1016/j.infrared.2007.07.002
- L.N. Latyev, V.Ya. Chekhovskoi, E.N. Shestakov. Phys. Stat. Sol., 38 (2), K149 (1970)
- H. Watanabe, M. Susa, K. Nagata. Metallurgical and Materials Transactions A, 28, 2507 (1997). DOI: 10.1007/s11661-997-0008-7
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.