Study of NMR signals of rubidium in aqueous solutions and determination of the magnetic moments of Rb-85 and Rb-87 nuclei
Neronov Y.I.1, Pronin A.N.1
1D.I. Mendeleev Institute for Metrology, St. Petersburg, Russia
Email: yineronov@mail.ru
The problem of increasing the accuracy of determining the magnetic moments of rubidium-85 and rubidium-87 nuclei based on the study of NMR signals of RbNO3 and RbCl solutions in water is considered. The spectral linewidth of the NMR signals from the 85Rb and 87Rb nuclei is a hundred times greater than the similar width of the signals from the nuclei for other neighboring alkaline elements of the periodic table, and such a broadening limits the possibilities for precision registration of nuclear resonance frequencies. Simultaneous registration of nuclear magnetic resonance signals from water protons and from rubidium nuclei was used in the work, which makes it possible to minimize the spread of data for the resonance frequency ratio. The ratios of the resonance frequencies of water protons and 85Rb, 87Rb nuclei were determined for aqueous solutions of RbCl and RbNO3 with concentrations from 0.5 to 2.0 mol/kg H2O. As a result, the ratios of magnetic moments μ(87Rb)/μ(85Rb)=2.0333981(2) were calculated with a relative uncertainty delta~10-7. The data on the resonance frequency ratio f(^1H)/f(87Rb) for the content of rubidium salts in water were extrapolated to zero concentrations and f(^1H)/f(87Rb)=3.0561795(2) was determined for rubidium ions surrounded by water molecules. As a result, the magnetic moments are determined μ(85Rb)=1.353067(37), μ(87Rb)=2.751324(74). The obtained results are compared with the data of previous works. Keywords: precision determination of nuclear magnetic moments, simultaneous registration of NMR signals from two types of nuclei, quantum radiophysics. Keywords: precision assessment of nuclear magnetic moments, rubidium-87 in solution and spin-spin interaction, simultaneous registration of signals from two types of nuclei, quantum radiophysics.
- C.W. White, W.M. Hughes, G.S. Hayne, H. Robinson. Phys. Rev., 174, 23 (1968). DOI: 10.1103/PhysRev.174.23
- G.H. Fuller. J. Phys. Chem. Ref. Data, 5, 835 (1976). DOI: 10.1063/1.555544
- V.J. Ehlers, T.R. Fowler, H.A. Shugart. Phys. Rev., 167, 1062 (1968). DOI: 10.1103/PhysRev.167.1062
- ISOLDE Collaboration, H.T. Duong, C. Ekstrom, M. Gustafsson, T.T. Inamura, P. Juncar, P. Lievens, I. Lindgren, S. Matsuki, T. Murayama, R. Neugart, T. Nilsson, T. Nomura, M. Pellarin, S. Penselin, J. Persson, J. Pinard, I. Ragnarsson, O. Redi, H.H. Stroke, J.L. Vialle. Nucl. Instrum. Method. Phys. Res., A325, 465 (1993). DOI: 10.1016/0168-9002(93)90392-U
- O. Lutz. Z. Naturforsch, 23a, 1202 (1968)
- N.J. Stone. Atomic Data Nucl. Data Tables, 90 (1), 75 (2005)
- N.J. Stone. TABLE OF NUCLEAR MAGNETIC DIPOLE AND ELECTRIC QUADRUPOLE MOMENTS (Nuclear Data Section International Atomic Energy Agency Vienna International Centre, Vienna, Austria, 2014), https://www-nds.iaea.org/publications/indc/indc-nds-0658.pdf
- P.J. Mohr, D.B. Newell, B.N. Taylor. Rev. Modern Phys., 88, 035009 (2016). DOI: 10.1103/RevModPhys.88.035009
- A. Mooser, S. Ulmer, K. Blaum, K. Franke, H Kracke, C. Leiteritz, W. Quint, C.C. Rodegheri, C. Smorra, J. Walz. Nature, 509, 596 (2014). DOI: 10.1126/science.aan0207
- Yu.I. Neronov, N.N. Seregin. Metrologia, 51 (1), 54 (2014). DOI: 10.1088/00261394/51/1/54
- Yu.I. Neronov, N.N. Seregin. Measurement Techniques, 53 (8), 2010, 926 (2010)
- A. Antuv sek, D. Kedziera, A. Kaczmarek-Kedziera, M. Jaszunski. Chem. Phys. Lett., 532, 1 (2012). DOI: 10.1016/j.cplett.2012.02.036
- K. Hayamizu, Y. Chiba, T. Haishic RSC Adv., 11, 20252 (2021). https://pubs.rsc.org/en/content/articlepdf/2021/ra/ d1ra02301b
- Yu.I. Neronov. Izmer. Tekh., 9, 3 (2020) (in Russian). DOI: 10.32446/0368-1025it.2020-9-3-8
- Yu.I. Neronov. Tech. Phys., 66 (1), 93 (2021). DOI: 10.1134/S106378422101014X
- Yu.I. Neronov, A.N. Pronin. Izmer. Tekh., 4, 3 (2021) (in Russian). DOI: 10.32446/0368-1025it.2021-4-3-8
- Yu.I. Neronov, A.N. Pronin. Izmer. Tekh., 3, 3 (2021) (in Russian). DOI: 10.32446/0368-1025it.2021-11-3-7
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.