Polarization-dependent filamentation of femtosecond laser pulses in synthetic diamond
Krasin G. K. 1, Stsepuro N. G. 1, Martovitsky V. P. 1, Kovalev M. S. 1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: krasin.georg@gmail.com, sng.bmstu.rl@gmail.com, martovickijvp@lebedev.ru, m.s.kovalev@gmail.com

PDF
The filamentation process inside of the bulk of type IIa synthetic diamond with known crystallographic orientation has been studied as a function of the polarization state of the ultrashort laser pulses with a duration of 300 fs and a wavelength of 515 nm. The transmittance of the sample was measured using a photodiode, while the micro-image of the filament was recorded on the CMOS camera perpendicular to the propagation axis of the exciting laser radiation. The dependences of the transmittance and length of the filament on the polarization azimuth show a distinct modulation over the entire range of its change. Keywords: ultrashort laser pulses, synthetic diamond, photoluminescence, laser polarization, nonlinear absorption, wide-bandgap dielectrics.
  1. A.J. Traverso, J. Huang, T. Peyronel, G. Yang, T.G. Tiecke, M.H. Mikkelsen. Optica, 8 (2), 202 (2021). DOI: 10.1364/OPTICA.400731
  2. V. Kesaev, A. Nastulyavichus, S. Kudryashov, M. Kovalev, N. Stsepuro, G. Krasin. Opt. Mater. Express, 11 (7), 1971 (2021). DOI: 10.1364/OME.428047
  3. S.I. Kudryashov, T. Pflug, N.I. Busleev, M. Olbrich, A. Horn, M.S. Kovalev, N.G. Stsepuro. Opt. Mater. Express, 11 (1), 1 (2021). DOI: 10.1364/OME.412790
  4. R. Zazo, J. Solis, J.A. Sanchez-Gil, R. Ariza, R. Serna, J. Siegel. Appl. Surf. Sci., 520, 146307 (2020). DOI: 10.1016/j.apsusc.2020.146307
  5. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensle-ben, A. Tunnermann. Appl. Phys. A, 63, 109 (1996). DOI: 10.1007/BF01567637
  6. C. Liu, X.L. Mao, S.S. Mao, X. Zeng, R. Greif, R.E. Russo. Anal. Chem., 76 (2), 379 (2004). DOI: 10.1021/ac035040a
  7. K.-H. Leitz, B. Redlingshofer, Y. Reg, A. Otto, M. Schmidt. Phys. Procedia, 12 (B), 230 (2011). DOI: 10.1016/j.phpro.2011.03.128
  8. A.A. Kuchmizhak, A.P. Porfirev, S.A. Syubaev, P.A. Danilov, A.A. Ionin, O.B. Vitrik, Yu.N. Kulchin, S.N. Khonina, S.I. Kudryashov. Opt. Lett., 42 (14), 2838 (2017). DOI: 10.1364/OL.42.002838
  9. A.E. Rupasov, P.A. Danilov, M.P. Smaev, M.S. Kovalev, A.S. Zolot'ko, A.A. Ionin, S.I. Kudryashov. Opt. Spectr., 128, 928 (2020). DOI: 10.1134/S0030400X20070188
  10. P. Balling, J. Schou. Rep. Prog. Phys., 76, 036502 (2013). DOI: 10.1088/0034-4885/76/3/036502
  11. D.A. Zayarny, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, A.A. Kuchmizhak, O.B. Vitrik, Yu.N. Kulchin. JETP Lett., 103 (12), 752 (2016). DOI: 10.1134/S0021364016120158
  12. D.J. Little, M. Ams, P. Dekker, G.D. Marshall, J.M. Dawes, M.J. Withford. Opt. Express, 16 (24), 20029 (2008). DOI: 10.1364/OE.16.020029
  13. V.V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, D. von der Linde. Phys. Rev. Lett., 97, 23 (2006). DOI: 10.1103/PhysRevLett.97.237403
  14. A.P. Joglekar, H. Liu, E. Meyhofer, G. Mourou, A.J. Hunt. PNAS, 101 (16), 5856 (2004). DOI: 10.1073/pnas.0307470101
  15. D. Liu, Y. Li, M. Liu, H. Yang, Q. Gong. Appl. Phys. B, 91, 597 (2008). DOI: 10.1007/s00340-008-3022-6
  16. L.A. Lompre, G. Mainfray, C. Manus, J. Thebault. Phys. Rev. A, 15 (4), 1604 (1977). DOI: 10.1103/PhysRevA.15.1604
  17. Q. Wen, P. Zhang, G. Cheng, F. Jiang, X. Lu. Ceram. Int., 45 (17), 23501 (2019). DOI: 10.1016/j.ceramint.2019.08.056
  18. X. Zhang, L. Zhang, S. Mironov, R. Xiao, L. Guo, T. Huang. Appl. Phys. A, 127, 196 (2021). DOI: 10.1007/s00339-021-04341-y
  19. G.K. Krasin, M.S. Kovalev, P.A. Danilov, N.G. Stsepuro, E.A. Oleynichuk, S.A. Bibicheva, S.I. Kudryashov. JETP Lett., 114 (3), 117 (2021). DOI: 10.1134/S0021364021150054
  20. Z. Zhu, T.-J. Wang, Y. Liu, N. Chen, H. Zhang, H. Sun, H. Guo, J. Zhang, X. Zhang, G. Li, C. Liu, Z. Zeng, J. Liu, S.L. Chin, R. Li, Z. Xu. Chin. Opt. Lett., 16 (7), 073201 (2018). DOI: 10.3788/COL201816.073201
  21. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, A. Mysyrowicz. Phys. Rev. Lett., 114, 063003 (2015). DOI: 10.1103/PhysRevLett.114.063003
  22. J. Chang, R. Zhu, T. Xi, M. Xu, D. Wang, L. Zhang, D. Li, Z. Hao. Chin. Opt. Lett., 17 (12), 123201 (2019). DOI: 10.3788/COL201917.123201
  23. M.M. Brundavanam, P.K. Velpula, N.R. Desai. In: Proc. of Tenth Int. Conf. on Fiber Optics and Photonics (SPIE, 2011), 8173, 81730P. DOI: 10.1117/12.897913
  24. K. Kobashi. Diamond films: chemical vapor deposition for oriented and heteroepitaxial growth, 1st ed. (Elsevier, 2005). DOI: 10.1016/B978-0-08-044723-0.X5000-4
  25. P.P. Feofilov. UFN, 58 (1), 69 (1956) (in Russian). DOI: 10.3367/UFNr.0058.195601c.0069
  26. S.I. Kudryashov, A.O. Levchenko, P.A. Danilov, N.A. Smirnov, A.A. Ionin. Opt. Lett., 45 (7), 2026 (2020). DOI: 10.1364/OL.389348

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru