Measurement of two-photon absorption coefficient of 1030 nm ultrashort laser pulses on natural diamond color centers
Gulina Y.S.
1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: julia-sg@yandex.ru
An experimental study of nonlinear absorption process of ultrashort laser pulses in bulk of natural diamond has been carried out. The results of experimental studies on measuring nonlinear transmission of 1 mm thick plane-parallel plate made of diamond irradiated with focused by micro lens (NA=0.55 with focal length f'=5 mm) 0.3 and 10 ps laser pulses with 1030 nm wavelength are presented. It is shown that in this sample the main attenuation mechanism of ultrashort laser pulses with 1030 nm wavelength at intensities not exceeding 10 TW/cm2 is two-photon absorption at color centers, the absorption coefficient β2 =4.1 ± 0.3 cm/TW is determined. Keywords: femtosecond laser pulses, nonlinear absorption, natural diamond, multiphoton absorption, color centers.
- V.V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, D. von der Linde. Phys. Rev. Lett., 97 (23), 237403 (2006). DOI: 10.1103/PhysRevLett.97.237403
- A. Joglekar, H. Liu, E. Meyhofer, G. Mourou, A. J. Hunt. Proceedings of the National Academy of Sciences, 101 (16), 5856 (2004). DOI: 10.1073/pnas.0307470101
- B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry. Phys. Rev. B, 53 (4), 1749 (1996). DOI: 10.1103/PhysRevB.53.1749
- N.M. Bulgakova, R. Stoyan, A. Rosenfeld, I.V. Hertel, E.E.B. Campbell. Phys. Rev. B, 69 (5), 054102 (2004). DOI: 10.1103/PhysRevB.69.054102
- L. Cerami, E. Mazur, S. Nolte, C.B. Schaffer. Ultrafast nonlinear optics (Springer, Heidelberg, 2013), p. 287-321. DOI: 10.1007/978-3-319-00017-6_12
- K.C. Phillips, H.H. Gandhi, E. Mazur, S.K. Sundaram. Advances in Optics and Photonics, 7 (4), 684 (2015). DOI: 10.1364/AOP.7.000684
- F. Chen, J.V. de Aldana. Laser Photonics Rev., 8 (2), 251 (2014). DOI: 10.1002/lpor.201300025
- D.A. Zayarny, A.A. Ionin, S.I. Kudryashov, I.N. Saraeva, E.D. Startseva, R.A. Khmelnitskii. JETP Letters, 103 (5), 309 (2016). DOI: 10.1134/S0021364016050143
- G.K. Krasin, S.I. Kudryashov, P.A. Danilov, N.A. Smirnov, A.O. Levchenko, M.S. Kovalev. The Europ. Phys. J. D, 75 (8), 1 (2021). DOI: 10.1140/epjd/s10053-021-00234-0
- S. Kudryashov, P. Danilov, N. Smirnov, A. Levchenko, M. Kovalev, Y. Gulina, O. Kovalchuk, A. Ionin. Optical Materials Express, 11 (8), 2505 (2021). DOI: 10.1364/OME.427788
- S. Kudryashov, P. Danilov, A. Rupasov, S. Khonina, A. Nalimov, A. Ionin, G. Krasin, M. Kovalev. Optical Materials Express, 10 (12), 3291 (2020). DOI: 10.1364/OME.412399
- T. Roth, R. Laenen. Optics Commun., 189 (4-6), 289 (2001). DOI: 10.1016/S0030-4018(01)01037-9
- S. Preuss, M. Stuke. Appl. Phys. Lett., 67 (3), 338 (1995). DOI: 10.1063/1.115437
- S.V. Gagarskii, K.V. Prikhod'ko. J. Opt. Technology, 75 (3), 139 (2008). DOI: 10.1364/JOT.75.000139
- P. Simon, H. Gerhardt, S. Szatmari. Opt. Lett., 14 (21), 1207 (1989). DOI: 10.1364/OL.14.001207
- S.I. Kudryashov, A.O. Levchenko, P.A. Danilov, N.A. Smirnov, A.A. Ionin. Opt. Lett., 45 (7), 2026 (2020). DOI: 10.1364/OL.389348
- M. Sheik-Bahae, R.J. DeSalvo, A.A. Said, D.J. Hagan, M.J. Soileau, E.W. Van Stryland. Laser-Induced Damage in Optical Materials, 2428, 605 (1995). DOI: 10.1117/12.213706
- Y. Dumeige, F. Treussart, R. Alleaume, T. Gacoin, J.-F. Roch, P. Grangier. J. Lumen., 109 (2), 61 (2004). DOI: 10.1016/j.jlumin.2004.01.020
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.