Спектрально-угловые характеристики излучения заряженной частицы в поле Редмонда
Кудрявцев Д.И.1, Копытов Г.Ф.2, Суханов А.Е.1
1Кубанский государственный университет, Краснодар, Россия
2Московский государственный университет технологий и управления (Первый казачий университет), Москва, Россия
Email: dmitriy-kudryavtsev-2016@mail.ru, g137@mail.ru, sa.world1111@yandex.ru
Поступила в редакцию: 5 июня 2022 г.
В окончательной редакции: 26 июля 2022 г.
Принята к печати: 3 августа 2022 г.
Выставление онлайн: 25 октября 2022 г.
На основе решения уравнения движения заряда в электромагнитном поле построена классическая теория излучения релятивистской заряженной частицы, линейно ускоренной высокоинтенсивным лазерным импульсом в присутствии статической компоненты магнитного поля. Решения, полученные Г.Ф. Копытовым и А.В. Погореловым, использованы для исследования спектрально-угловых характеристик излучения заряженной частицы в комбинации поля плоской монохроматической электромагнитной волны и постоянного магнитного поля, так называемым полем Редмонда. По вычисленным формулам для интенсивности излучения частиц в поле Редмонда построены графики зависимости от величины магнитного поля, фазового и фазово-углового распределения. Получен фурье-образ напряженности электрического поля излучения и спектральной плотности излучения частицы в случае линейной поляризации волны. Ключевые слова: поле Редмонда, спектрально-угловые характеристики, заряженная частица, теорема Лоусона-Вудворда, сверхмощное лазерное излучение.
- Н.С. Акинцов, Г.Ф. Копытов, А.А. Мартынов. Научно-технические ведомости СПбГПУ. Физико-математические науки, 230 (4), 150 (2015). DOI: 10.5862/JPM.230.14
- T. Tajima, J. Dawson. Phys. Rev. Lett., 43 (4), 267 (1979). DOI: 10.1103/PhysRevLett.43.267
- Y. Wu, J. Hua, Z. Zhou, J. Zhang, S. Liu, B. Peng, Y. Fang, X. Ning, Z. Nie, F. Li, C. Zhang, C.-H. Pai, Y. Du, W. Lu, W.B. Mori, C. Joshi. Nat. Phys., 17, 801 (2021). DOI: 10.1038/s41567-021-01202-6
- L.J. Wong, K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljav cic, J.D. Joannopoulos, F.X. Kartner, I. Kaminer. Sci. Rep., 7 (1), 11159 (2017). DOI: 10.1038/s41598-017-11547-9
- P.M. Woodward, J.D. Lawson. J. Institution of Electrical Engineers --- Part III: Radio and Communication Engineering, 95 (37), 363 (1948). DOI: 10.1049/ji-3-2.1948.0094
- P.J. Redmond. J. Math. Phys., 6, 1163 (1965). DOI: 10.1063/1.1704385
- V.G. Bagrov, V.A. Bordovitsyn. Zh. Vychisl. Mat. Mat. Fiz., 8 (3), 691 (1968). [V.G. Bagrov, V.A. Bordovitsyn, Comput. Math. Math. Phys., 8 (3), 274 (1968) DOI: 10.1016/0041- 5553(68)90082-7]
- A. Orefice. II Nuovo Cimento B, 63 (2), 638 (1969). DOI: 10.1007/BF02710713
- E.M. Boldyrev. J. Techn. Phys., 69 (5), 106 (1999)
- V.V. Apollonov, M.V. Fedorov, A.M. Prokhorov, A.G. Suzdal'tsev. IEEE J. Quantum Electronics, 28 (1), 265 (1992). DOI: 10.1109/3.119522
- B.-L. Qian. Physics of Plasmas, 7, 537 (2000). DOI: 10.1063/1.873839
- A. Dubik. Laser and Particle Beams, 18 (2), 341 (2000). DOI: 10.1017/S0263034600182254
- Г.Ф. Копытов, А.А. Мартынов, Н.С. Акинцов. Научно-технические ведомости СПбГПУ. Физико-математические науки, 206 (4), 55 (2014)
- Г.Ф. Копытов, А.В. Погорелов. Научно-технические ведомости СПбГПУ. Физико-математические науки, 146 (2), 112 (2012)
- V. Zhukovsky. Symmetry, 12 (8), 1367 (2020). DOI: 10.3390/sym12081367
- V.A. Buts, A.G. Zagorodny. Physics of Plasmas, 28 (2), 022311 (2021). DOI: 10.1063/5.0037808
- Yu.A. Bashmakov, D.F. Alferov. J. Technical Physics, 55 (5), 829 (1985)
- A.V. Bashinov, A.A. Gonoskov, A.V. Kim, M. Marklund, G. Mourou, A.M. Sergeev. Quantum Electronics, 43 (4), 291 (2013). DOI: 10.1070/QE2013v043n04ABEH015101
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.