Lebedev D. V.1,2,3, Shkoldin V. A.1,4, Mozharov A. M.2, Petukhov A. E.2, Golubok A. O.3, Arkhipov A. V.5, Mukhin I. S.1,5, Dubrovsky V. G.2
1Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
3Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
4ITMO University, St. Petersburg, Russia
5Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: Denis.v.lebedev@gmail.com
A technique for synthesizing nanostructures by current lithography in a scanning tunneling microscope (STM lithography) in layered Au/Si structures has been developed. An experimental dependence of the geometric dimensions of the created nanostructures on the time of current STM lithography has been obtained. A theoretical model for the growth of nanostructures is proposed, which explains the nonlinear dependence of the radius of the obtained nanostructures on time with saturation in the region of large radii. Keywords: Au/Si nanostructures, STM lithography, growth rate, modeling.
- J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, B. Hecht, Nature Photon., 9, 582 (2015). DOI: 10.1038/nphoton.2015.141
- W. Du, T. Wang, H.-S. Chu, C.A. Nijhuis, Nature Photon., 11, 623 (2017). DOI: 10.1038/s41566-017-0003-5
- H.-S. Ee, Y.-S. No, J. Kim, H.-G. Park, M.-K Seo, Opt. Lett., 43, 2889 (2018). DOI: 10.1364/OL.43.002889
- Y. Fang, M. Sun, Light: Sci. Appl., 4, e294 (2015). DOI: 10.1038/lsa.2015.67
- A. Liu, P. Wolf, J.A. Lott, D. Bimberg, Photon. Res., 7, 121 (2019). DOI: 10.1364/PRJ.7.000121
- D. Liang, J.E. Bowers, Nature Photon., 4, 511 (2010). DOI: 10.1038/nphoton.2010.167
- A.S. Polushkin, E.Y. Tiguntseva, A.P. Pushkarev, S.V. Makarov, Nanophotonics, 9, 599 (2020). DOI: 10.1515/nanoph-2019-0443
- J. Lambe, S.L. McCarthy, Phys. Rev. Lett., 37, 923 (1976). DOI: 10.1103/PhysRevLett.37.923
- D.V. Lebedev, A.M. Mozharov, A.D. Bolshakov, V.A. Shkoldin, D.V. Permyakov, A.O. Golubok, A.K. Samusev, I.S. Mukhin, Phys. Status Solidi (RRL), 14, 1900607 (2020). DOI: 10.1002/pssr.201900607
- S.W. Hla, Rep. Prog. Phys., 77, 056502 (2014). DOI: 10.1088/0034-4885/77/5/056502
- S.W. Hla, J. Vac. Sci. Technol., 23, 1351 (2005). DOI: 10.1116/1.1990161
- Z. Klusek, A. Busiakiewicz, P.K. Datta, R. Schmidt, W. Kozlowski, P. Kowalczyk, P. Dabrowski, W. Olejniczak, Surf. Sci., 601, 1513 (2007). DOI: 10.101/j.susc.2007.01.011
- V.M. Kornilov, A.N. Lachinov, Microelectron. Eng., 69, 399 (2003). DOI: 10.1016/S0167-9317(03)00327-7
- S. Kondo, S. Heike, M. Lutwyche, Y. Wada, J. Appl. Phys., 78, 155 (1995). DOI: 10.1063/1.360733
- S.V. Makarov, I.S. Sinev, V.A. Milichko, F.E. Komissarenko, D.A. Zuev, E.V. Ushakova, I.S. Mukhin, Y.F. Yu, A.I. Kuznetsov, P.A. Belov, I.V. Iorsh, A.N. Poddubny, A.K. Samusev, Yu.S. Kivshar, Nano Lett., 18, 535 (2018). DOI: 10.1021/acs.nanolett.7b04542
- S.A. Kukushkin, A.V. Osipov, Prog. Surf. Sci., 151, 1 (1996). DOI: 10.1016/0079-6816(96)82931-5
- V.G. Dubrovskii, J. Chem. Phys., 131, 164514 (2009). DOI: 10.1063/1.3254384
- V.G. Dubrovskii, N.V. Nazarenko, J. Chem. Phys., 132, 114507 (2010). DOI: 10.1063/1.3354118
- V.G. Dubrovskii, N.V. Sibirev, X. Zhang, R.A. Suris, Cryst. Growth Des., 10, 3949 (2010). DOI: 10.1021/cg100495b
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.