Energy Characteristics of Electron-Stimulated Desorption of Lithium Atoms from Lithium Layers on the LixAuy Surface
Kuznetsov Yu. A.1, Lapushkin M.N.1
1Ioffe Institute, St. Petersburg, Russia
Email: kuznets@ms.ioffe.ru, lapushkin@ms.ioffe.ru
The formation of 2D LixAuy semiconductor layers on the surface of gold deposited on a tungsten substrate has been studied. The processes of electron-stimulated desorption of Li atoms in the Li/LixAuy/Au/W system are considered. The presence of two peaks in the kinetic energy distribution of desorbed lithium atoms is shown: a high energy peak at an energy of 0.3 eV and a low energy peak at an energy of 0.11 eV. The high energy peak is associated with the desorption of lithium atoms from the adsorbed lithium layers, and the low energy peak is associated with the LixAuy intermetallic compound. The influence of the number of deposited gold and lithium atoms on the process of formation of 2D semiconductor LixAuy layers is studied. It is shown that the processes of electron-stimulated desorption occur in the Li monolayer and the LixAuy layer closest to it. A model of electron-stimulated desorption of Li atoms in the Li/LixAuy/Au/W system is proposed. Keywords: electron-stimulated desorption, lithium, gold, semiconductor, intermetallic compound.
- C. Cretu, E. van der Lingen. Gold. Bull. 32, 4, 115 (1999)
- C.H. Mathewson. Int. Z. Metallographie 1, 81 (1911)
- A.N. Sommer. Nature 152, 3851, 215 (1943)
- W.E. Spicer, A.N. Sommer, J.G. White. Phys. Rev. 115, 1, 57 (1959)
- M. Jansen. Chem. Soc. Rev. 37, 9, 1826 (2008)
- C. Wallden, L. Norris. Phys. Status Solidi A 381, 2 (1970)
- K.-J. Range, F. Rau, U. Klement. Acta Crystallographica C 44, 8, 1485(1988)
- N.E. Christensen, J. Kollar. Solid Status. Commun. 46, 72 (1983)
- G.H. Grosch, K.-J. Range. J. Alloys Comp. 233, 1-2, 30 (1996)
- R. Sarmiento-Perez, T.F.T. Cerqueira, I. Valencia-Jaime, M. Amsler, S. Goedecker, S. Botti, M.A.L. Marques, A.H. Romero. New J. Phys. 15, 11, 115007 (2013)
- G.H. Grosch, K.-J. Range. J. Alloys Comp. 233, 1-2, 39 (1996)
- G. Yang, Y. Wang, F. Peng, A. Bergara, Y. Ma. J. Am. Chem. Soc. 138, 12, 4046 (2016)
- Yu.A. Kuznetsov, M.N. Lapushkin. Physics of the Solid State 62, 11, 1949 (2020)
- V.N. Ageev, Yu.A. Kuznetsov. Physics of the Solid State 50, 2, 365 (2008)
- M.V. Knat'ko, M.N. Lapushkin, V.I. Paleev. Technical Physics 68, 10, 108 (1998)
- M.V. Knat'ko, M.L. Lapushkin, V.I. Paleev. Phys. Low-Dime. Struct. 9-10, 85 (1999)
- Yu.A. Kuznetsov, M.N. Lapushkin. Physics of the Solid State 63, 10, 1701 (2021)
- V.N. Ageev, E.Yu. Afanas'eva. Physics of the Solid State 48, 12, 2217 (2006)
- V.N. Ageev. Prog. Surf. Sci. 47, 1, 55 (1994)
- T.E. Madey. Surf. Sci. 299/300, 824 (1994)
- U.Kh. Rasulev, E.Ya. Zandberg. Prog. Surf. Sci. 28, 3-4, 181 (1988)
- V.N. Ageev, Yu.A. Kuznetsov, N.D. Potekhina. Technical Physics 83, 6, 85 (2013)
- J.A. Rodriguez, J. Hrbek, Y.-W. Yang, M. Kuhn, T.K. Sham. Surf. Sci. 293, 3, 260 (1993)
- Yu.A. Kuznetsov, M.N. Lapushkin. Physical \& chemical aspects of study of clusters, nanostructures and nanomaterials 7, 333 (2015)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.