Modeling of luminescence spectra in spherical microresonators with an emitting shell
Dukin A. A.
1, Golubev V. G.
1
1Ioffe Institute, St. Petersburg, Russia
Email: dookin@gvg.ioffe.ru, golubev@gvg.ioffe.ru
The luminescence spectra of a microresonator structure consisting of a spherical core of small diameter (3.5-6 mcm) covered with a luminescent shell with a refractive index less than that of the core are modeled. Shell luminescence spectra, radial distribution of the whispering gallery mode (WGM) field, and mode parameters (wavelength, width, quality factor) are calculated using the expansion of the electromagnetic wave field in the basis of vector spherical harmonics and the method of spherical wave transfer matrices. The dependence of the luminescence spectra and WGM parameters on the geometric and optical parameters of the structure - the shell thickness, the refractive index of the shell, and the core diameter - is studied. Keywords: spherical microresonator, luminescent shell, whispering gallery modes, modeling of luminescence spectra.
- Oraevsky A.N. // Quantum Electron. 2002. V. 32. N 5. P. 377. doi 10.1070/QE2002v032n05ABEH002205
- Gorodetsky M.L. Opticheskie mikrorezonatory s gigantskoj dobrotnost'yu (in Russian). M.: FIZMATLIT, 2011. 416 p. (in Russian)
- Foreman M.R., Swaim J.D., Vollmer F. // Adv. Opt. Photon. 2015. V. 7. N 2. P. 168. doi 10.1364/AOP.7.000168
- Francois A., Zhi Y., Meldrum A. // Photonic Materials for Sensing, Biosensing and Display Devices. Springer International Publishing, 2016. V. 229. P. 237. doi 10.1007/978-3-319-24990-2
- Ward J., Benson O. // Las. Photon. Rev. 2011. V. 5. N 4. P. 553. doi 10.1002/lpor.201000025
- Chiasera A., Dumeige Y., Feron P., Ferrari M., Jestin Y., Nunzi Conti G., Pelli S., Soria S., Righini G.C. // Las. Photon. Rev. 2010. V. 4. N 3. P. 457 doi 10.1002/lpor.200910016
- Rakovich Y.P., Donegan J.F. // Las. Photon. Rev. 2010. V. 4. N 2. P. 179. doi 10.1002/lpor.200910001
- Righini G.C., Soria S. // Sensors. 2016. V. 16. N 6. P. 905. doi 10.3390/s16060905
- Cai L., Pan J., Zhao Y., Wang J., Xiao S. // Phys. Stat. Sol. A. 2020. V. 217. N 6. P. 1900825. doi 10.1002/pssa.201900825
- Venkatakrishnarao D., Mamonov E.A., Murzina T.V., Chandrasekar R. // Adv. Opt. Mater. 2018. V. 6. N 18. P. 1800343. doi 10.1002/adom.201800343
- Gorodetskii M.L., Ilchenko V.S., Savchenkov A.A. // Opt. Lett. 1996. V. 21. N 7. P. 453. doi 10.1364/OL.21.000453
- Reynolds T., Riesen N., Meldrum A., Fan X., Hall J.M.M., Monro T.M., Francois A. // Las. Photon. Rev. 2017. V. 11. N 2. P. 1600265. doi 10.1002/lpor.201600265
- Vollmer F., Arnold S. // Nat. Methods. 2008. V. 5. N 7. P. 591. doi 10.1038/NMETH.1221
- Jiang X., Qavi A.J., Huang S.H., Yang L. // Matter. 2020. V. 3. N 2. P. 371. doi 10.1016/J.MATT.2020.07.008
- Zhi Y., Yu X.-C., Gong Q., Yang L., Xiao Y.-F. // Adv. Mater. 2017. V. 29. N 12. P. 1604920. doi 10.1002/adma.201604920
- Toropov N., Cabello G., Serrano M.P., Gutha R.R., Rafti M., Vollmer F. // Light Sci. Appl. 2021. V. 10. P. 42. doi 10.1038/s41377-021-00471-3
- Toropov N., Vollmer F. // Light Sci. Appl. 2021. V. 10. P. 77. doi 10.1038/s41377-021-00517-6
- Weller A., Liu F.C., Dahint R., Himmelhaus M. // Appl. Phys. B. 2008. V. 90. N 3-4. P. 561. doi 10.1007/s00340-007-2893-2
- Himmelhaus M., Krishnamoorthy S., Francois A. // Sensors. 2010. V. 10. N 6. P. 6257. doi 10.3390/s100606257
- Monte A.F.G., Rabelo D., Morais P.C. // J. All. Comp. 2010. V. 495. N 2. P. 436. doi 10.1016/j.jallcom.2009.11.040
- Dantham V.R., Bisht P.B. // J. Opt. Soc. Am. B. 2009. V. 26. N 2. P. 290. doi 10.1364/JOSAB.26.000290
- Mamonov E.A., Maydykovskiy A.I., Mitetelo N.V., Venkatakrishnarao D., Chandrasekar R., Murzina T.V. // Laser Phys. Lett. 2018. V. 15. N 3. P. 035401. doi 10.1088/1612-202x/aa9b23
- Venkatakrishnarao D., Sahoo C., Vattikunta R., Annadhasan M., Naraharisetty S.R.G., Chandrasekar R. // Adv. Opt. Mater. 2017. V. 5. N 22. P. 1700695. doi 10.1002/adom.201700695
- Moller B., Artemyev M.V., Woggon U., Wannemacher R. // Appl. Phys. Lett. 2002. V. 80. N 18. P. 3253. doi 10.1063/1.1475364
- Gotzinger S., Menezes L. de S., Benson O., Talapin D.V., Gaponik N., Weller H., Rogach A.L., Sandoghdar V. // J. Opt. B: Quantum Semiclass. Opt. 2004. V. 6. N 2. P. 154. doi 10.1088/1464-4266/6/2/005
- Fan X., Palinginis P., Lacey S., Wang H., Lonergan M.C. // Opt. Lett. 2000. V. 25. N 21. P. 1600. doi 10.1364/OL.25.001600
- Finlayson C.E., Sazio P.J.A., Sanchez-Martin R., Bradley M., Kelf T.A., Baumberg J.J. // Semicond. Sci. Technol. 2006. V. 21. N 3. P. L21. doi 10.1088/0268-1242/21/3/L01
- Melnikau D., Savateeva D., Chuvilin A., Hillenbrand R., Rakovich Y.P. // Opt. Expr. 2011. V. 19. N 22. P. 22280. doi 10.1364/OE.19.022280
- Mi Y., Zhang Z., Zhao L., Zhang S., Chen J., Ji Q., Shi J., Zhou X., Wang R., Shi J., Du W., Wu Z., Qiu X., Zhang Q., Zhang Y., Liu X. // Small. 2017. V. 13. N 42. P. 1701694. doi 10.1002/smll.201701694
- Schietinger S., Schroder T., Benson O. // Nano Lett. 2008. V. 8. N 11. P. 3911. doi 10.1021/nl8023627
- Rakovich Y.P., Yang L., McCabe E.M., Donegan J.F., Perova T., Moore A., Gaponik N., Rogach A. // Semicond. Sci. Technol. 2003. V. 18. N 11. P. 914. doi 10.1088/0268-1242/18/11/302
- Eurov D.A., Stovpiaga E.Yu., Kurdyukov D.A., Dukin A.A., Smirnov A.N., Golubev V.G. // Phys. Solid State. 2020. V. 62. N 10. P. 1898. doi 10.1134/S1063783420100054
- Grudinkin S.A., Dontsov A.A., Feoktistov N.A., Baranov M.A., Bogdanov K.V., Averkiev N.S., Golubev V.G. // Semiconductors. 2015. V. 49. N 10. P. 1369. doi 10.1134/S1063782615100085
- Teraoka I., Arnold S. // J. Opt. Soc. Am. B. 2007. V. 24. N 3. P. 653. doi 10.1364/JOSAB.24.000653
- Zijlstra P., van der Molen K.L., Mosk A.P. // Appl. Phys. Lett. 2007. V. 90. N 16. P. 161101. doi 10.1063/1.2722695
- Pang S., Beckham R.E., Meissner K.E. // Appl. Phys. Lett. 2008. V. 92. N 22. P. 221108. doi 10.1063/1.2937209
- Francois A., Himmelhaus M. // Sensors. 2009. V. 9. N 9. P. 6836. doi 10.3390/s90906836
- Beier H.T., Cote G.L., Meissner K.E. // Ann. Biomed. Eng. 2009. V. 37. N 10. P. 1974. doi 10.1007/s10439-009-9713-2
- Trofimova E.Y., Aleksenskii A.E., Grudinkin S.A., Korkin I.V., Kurdyukov D.A., Golubev V.G. // Colloid J. 2011. V. 73. N 4. P. 546. doi 10.1134/S1061933X11040156
- Trofimova E.Yu., Kurdyukov D.A., Yakovlev S.A., Kirilenko D.A., Kukushkina Yu.A., Nashchekin A.V., Sitnikova A.A., Yagovkin M.A., Golubev V.G. // Nanotechnol. 2013. V. 24. N 15. P. 155601. doi 10.1088/0957-4484/24/15/155601
- Kurdyukov D.A., Eurov D.A., Kirilenko D.A., Kukushkina J.A., Sokolov V.V., Yagovkina M.A., Golubev V.G. // Micro. Mesopor. Mater. 2016. V. 223. P. 225. doi 10.1016/j.micromeso.2015.11.018
- Kurdyukov D.A., Eurov D.A., Kirilenko D.A., Sokolov V.V., Golubev V.G. // Micro. Mesopor. Mater. 2018. V. 258. P. 205. doi 10.1016/j.micromeso.2017.09.017
- Trofimova E.Yu., Grudinkin S.A., Kukushkina Yu.A., Kurdyukov D.A., Medvedev A.V., Yagovkina M.A., Golubev V.G. // Phys. Solid State. 2012. V. 54. N 6. P. 1298. doi 10.1134/S1063783412060339
- Cho E.-B., Volkov D.O., Sokolov I. // Small. 2010. V. 6. N 20. P. 2314. doi 10.1002/smll.201001337
- Kalaparthi V., Palantavida S., Sokolov I. // J. Mater. Chem. C. 2016. V. 4. N 11. P. 2197. doi 10.1039/c5tc04221f
- Nelson D.K., Razbirin B.S., Starukhin A.N., Eurov D.A., Kurdyukov D.A., Stovpiaga E.Yu., Golubev V.G. // Opt. Mater. 2016. V. 59. P. 28. doi 10.1016/j.optmat.2016.03.051
- Eurov D.A., Kurdyukov D.A., Medvedev A.V., Kirilenko D.A., Tomkovich M.V., Golubev V.G. // Nanotechnol. 2021. V. 32. N 21. P. 215604. doi 10.1088/1361-6528/abe66e
- Sathe T.R., Agrawal A., Nie S. // Anal. Chem. 2006. V. 78. N 16. P. 5627. doi 10.1021/ac0610309
- Eurov D.A., Kurdyukov D.A., Kirilenko D.A., Kukushkina Yu.A., Nashchekin A.V., Smirnov A.N., Golubev V.G. // J. Nanopart. Res. 2015. V. 17. N 2. P. 82. doi 10.1007/s11051-015-2891-y
- Ushakova E.V., Cherevkov S.A., Sokolova A.V., Li Y., Azizov R.R., Baranov M.A., Kurdyukov D.A., Stovpiaga E.Y., Golubev V.G., Rogach A.L., Baranov A.V. // Chemnanomat. 2020. V. 6. N 7. P. 1080. doi 10.1002/cnma.202000154
- Stepanidenko E.A., Khavlyuk P.D., Arefina I.A., Cherevkov S.A., Xiong Y., Doring A., Varygin G.V., Kurdyukov D.A., Eurov D.A., Golubev V.G., Masharin M.A., Baranov A.V., Fedorov A.V., Ushakova E.V., Rogach A.L. // Nanomaterials. 2020. V. 10. N 6. P. 1063. doi 10.3390/nano10061063
- Cherevkov S., Azizov R., Sokolova A., Nautran V., Miruschenko M., Arefina I., Baranov M., Kurdyukov D., Stovpiaga E., Golubev V., Baranov A., Ushakova E. // Nanomaterials. 2021. V. 11. N 1. P. 119. doi 10.3390/nano11010119
- Kurdyukov D.A., Eurov D.A., Medvedev A.V., Golubev V.G. // Tech. Phys. Lett. 2020. V. 46. N 9. P. 928. doi 10.1134/S1063785020090229
- Tang F., Li L., Chen D. // Adv. Mater. 2012. V. 24. N 12. P. 1504. doi 10.1002/adma.201104763
- Colilla M., Gonzalez B., Vallet-Regi M. // Biomater. Sci. 2013. V. 1 N 2. P. 114. doi 10.1039/C2BM00085G
- He Q., Shi J. // Adv. Mater. 2014. V. 26. N 3. P. 391. doi 10.1002/adma.201303123
- Hall J.M.M., Reynolds T., Henderson M.R., Riesen N., Monro T.M., Shahraam Afshar V. // Opt. Expr. 2017. V. 25. N 6. P. 6192. doi 10.1364/OE.25.006192
- Righini G.C., Dumeige Y., Feron P., Ferrari M., Nunzi Conti G., Ristic D., Soria S. // Nuovo Cimento. 2011. V. 34. N 7. P. 435. doi 10.1393/ncr/i2011-10067-2
- Dukin A.A., Feoktistov N.A., Golubev V.G., Medvedev A.V., Pevtsov A.B., Sel'kin A.V. // Phys. Rev. E. 2003. V. 67. N 4. P. 046602. doi 10.1103/PhysRevE.67.046602
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.