Spectral-luminescence properties of cyclometallated Pd(II) complexes based on cinchophen methyl ester
Baichurin R.I. 1, Dulanova I. T.1, Puzyk Al. M.2, Puzyk M. V. 1
1Herzen State Pedagogical University of Russia, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: puzyk@mail.ru

PDF
A procedure of synthesis of Pd(II) complexes with 2-phenylquinoline-4-carboxylic acid methyl ester: PdMpqc(μ-Ac)]2 and [PdEnMpqc]BF4, where Mpqc is methyl 2-phenyl-4-quinolinecarboxylate ion, Ac - acetate ion, En - ethylenediamine, was developed. The composition and structure of the complexes obtained were established on the basis of IR and polynuclear NMR spectroscopy data, optical and physical properties were described on the basis of UV and fluorescence spectroscopy. The phosphorescence of Pd(II) complexes in the visible region was assigned to the radiative transition from the spin-forbidden intraligand electronically excited state 3(π-π) that is localized on the aromatic Mpqc system. Keywords: Pd(II) complexes, methyl 2-phenyl-4-quinolinecarboxylate, NMR spectroscopy, spectral-luminescence properties.
  1. Palmer W.L., Woodall P.S. // JAMA. 1936. V. 107. N 10. P. 760. doi 10.1001/jama.1936.02770360006003
  2. Melent'eva G.A., Antonova L.A. Farmatsevticheskaya khimiya. M.: Meditsina, 1985. 317 p. (In Russian)
  3. Dexter D.L., Hesson D.P., Ardecky R.J., Rao G.V., Tippett D.L., Dusak B.A., Paull K.D., Plowman J., DeLarco B.M., Narayanan V.L., Forbes M. // Cancer Research. 1985. V. 45. N 11. Part. 1. P. 5563
  4. Wang X., Xie X., Cai Y., Yang X., Li J., Li Y., Chen W., He M. // Molecules. 2016. V. 21. N 3. Article No. 340 (15 p.). doi 10.3390/molecules21030340
  5. Bing Y., Li X., Zha M.-Q., Wang D.-J. // Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2011. V. 41. P. 798. doi 10.1080/15533174.2011.591306
  6. Lei N., Ren Q.-L., Liu Y.-P., Li J., Cong P., Qin J., Zhu H.-L. // J. Molecular Structure. 2014. V. 1067. N 5. P. 220. doi org/10.1016/j.molstruc.2014.03.052 0022-2860
  7. Parish R.F., Wright J.P., Pritchard R.J. // J. Organomet. Chem. 2000. V. 596. P. 165. doi 10.1016/S0022-328X(99)00645-2
  8. Stacey O.J., Platts J.A., Coles S.J., Horton P.N., Pope S.J.A. // Inorg. Chem. 2015. V. 54(13). P. 6528. doi 10.1021/acs.inorgchem.5b00817
  9. Sternberg M., Rust J., Lehmann C.W., Mohr F. // Helvetica Chimica Acta. 2013. V. 96. P. 280. doi 10.1002/hlca.201200386
  10. Hao T., Yin C., Yang X., Fu Y., Zheng X., Li R., Xiao D., Chen H. // Eur. J. Inorg. Chem. 2017. V. 36. N 10. P. 4149. doi 10.1002/ejic.201700700
  11. Solomatina A.I., Su S.-H., Lukina M.M., Dudenkova V.V., Shcheslavskiy V.I., Wu C.-H., Chelushkin P.S., Chou P.-T., Koshevoy I.O., Tunik S.P. // RSC Adv. 2018. V. 8. P. 17224. doi 10.1039/c8ra02742k
  12. Smith R.A., Stokes E.C., Langdon-Jones E.E., Platts J.A., Kariuki B.M., Hallett A.J., Pope S.J.A. // Dalton Trans. 2013. V. 42. P. 10347. doi 10.1039/c3dt51098k
  13. Nikolaeva M.V., Katlenok E.A., Khakhalina M.S., Puzyk M.V., Balashev K.P. // J. Phys: Conference Series. 2014. V. 541. P. 012086. doi 10.1088/1742-6596/541/1/012086
  14. Nikolaeva M.V., Katlenok E.A., Khakhalina M.S., Puzyk M.V., Balashev K.P. // J. Phys: Conference Series. 2015. V. 643. P. 012045. doi 10.1088/1742-6596/643/1/012045
  15. Eremina A.A., Kinzhalov M.A., Katlenok E.A., Smirnov A.S., Andrusenko E.V., Pidko E.A., Suslonov V.V., Luzyanin K.V. // Inorg. Chem. 2020. V. 59. N 4. P. 2209. doi 10.1021/acs.inorgchem.9b02833
  16. Gasser G., Ott I., Metzler-Nolte N. // J. Med. Chem. 2011. V. 54. N 1. P. 3. doi org/10.1021/jm100020w
  17. Gordon A.J., Ford R.A. The Chemist's Companion: A Handbook of Practical Data, Techniques, and References. 1st Edition. NY: Wiley, 1972
  18. Nakamoto K. IK spektry and spektry KR neorganicheskikh i koordinatsionnykh soedineniy. M.: Mir, 1992. 300 p (in Russian)
  19. Sakharov S.G., Kovalev V.V., Gorbunova Yu.E., Tokmakov G.P., Skabitskii I.V., Kokunov Yu.V. // Russ. J. Coord. Chem. 2017. V. 43. N 2. P. 75. doi 10.1134/S1070328417010079
  20. Dokalik A., Kalchhauser H., Mikenda W., Schweng G. // Magn. Reson. Chem. 1999. V. 37. N 12. P. 895. doi 10.1002/(SICI)1097-458X(199912)37:12<895::AID-MRC581>3.0.CO;2-7
  21. Marciniec K., Maslankiewicz A., Maslankiewicz M.J., Kurczab R. // J. Mol. Struct. 2012. V. 1015. P. 46. doi 10.1016/j.molstruc.2012.01.049
  22. Kotlova I.A., Kolokolov F.A., Dotsenko V.V., Aksenov N.A., Aksenova I.V. // Russ. J. Gen. Chem. 2019. V. 89. N 12. P. 2413. doi 10.1134/S1070363219120144
  23. Mamedov V.A., Mamedova V.L., Khikmatova G.Z., Mahrous E.M., Korshin D.E., Syakaev V.V., Fayzullin R.R., Mironova E.V., Latypov Sh.K., Sinyashin O.G. // Russ. Chem. Bull., Int. Ed. 2019. V. 68. N 5. P. 1020. doi 10.1007/s11172-019-2513-4
  24. Shanahan R.M., Hickey A., Bateman L.M., Light M.E., McGlacken G.P. // J. Org. Chem. 2020. V. 85. N 4. P. 2585. doi 10.1021/acs.joc.9b03321
  25. Carlton L., Belciug M.-P. // J. Organomet. Chem. 1989. V. 378. N 3. P. 469. doi 10.1016/0022-328X(89)85371-9
  26. De Armond M., Carlin C. // Coord. Chem. Rev. 1981. V. 36. N 3. P. 325. doi 10.1016/S0010-8545(00)80502-0
  27. Katlenok E.A., Balashev K.P. // Russ. J. Gen. Chem. 2017. V. 87. N 2. P. 293. doi 10.1134/S1070363217020232
  28. Katlenok E.A., Balashev K.P. // Opt. Spectrosc. 2013. V. 115. N 4. P. 518. doi 10.7868/S0030403413040107
  29. Ghedini M., Aiello I., Crispini A., Golemme A., La Deda M., Pucci D. // Coord. Chem. Rev. 2006. V. 250. N 11-12. P. 1373. doi 10.1016/j.ccr.2005.12.011

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru