Bulyarskiy S. V.1, Koiva D. A.1, Gusarov G. G.1, Svetukhin V. V.2
1 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
2Scientific-Manufacturing Complex «Technological Centre», Zelenograd, Moscow, Russia
Email: bulyar2954@mail.ru, dkoiva616@gmail.com, geog1@mail.ru, svetukhin@mail.ru
Crystallization of amorphous titanium oxide films synthesized by magnetron sputtering was carried out at temperatures of 700, 800, and 900oC in an oxygen atmosphere. The refractive index of the films increases during crystallization with a time constant that depends on temperature, which made it possible to determine the activation energy of the crystallization process on the order of 0.6 eV. The growth kinetics model for the titanium oxide nanocrystals, which is used in this work, showed that the indicated activation energy corresponds to the diffusion energy of oxygen vacancies. This process is decisive for the growth of titanium oxide nanocrystals upon annealing in an oxygen atmosphere. The study of photoluminescence has shown that crystallization leads to a change in the ratio of intensities of different emission bands. The bands that are associated with the oxygen vacancy are extinguished. A decrease in the concentration of these vacancies in films leads to an increase in their resistance and stabilization of the films in time. Keywords: titanium oxide films, crystallization, refractive index, photoluminescence.
- Obstarczyk A., Kaczmarek D., Wojcieszak D., Mazur M., Domaradzki J., Kotwica T., Pastuszek R., Schmeisser D., Mazur P., Kot M.T. // Materials \& Design. 2019. V. 175. P. 107822. doi 10.1016/j.matdes.2019.107822
- Jiang S.S., He G., Gao J., Xiao D.Q., Jin P., Li W.D., Lv J.G., Liu M., Liu Y.M., Sun Z.Q. // Ceramics International. 2016. V. 42. N 10. P. 11640-11649. doi 10.1016/j.ceramint.2016.04.067
- Carpenter M.A., Mathur S., Kolmakov A. Metal Oxide Nanomaterials for Chemical Sensors. NY.: Springer, 2013
- Avasthi S., McClain W.E., Man G., Kahn A., Schwartz J., Sturm J.C. // Appl. Phys. Lett. 2013. V. 102. N 20. P. 203901. doi 10.1063/1.4803446
- Nagamatsu K.A., Avasthi S., Sahasrabudhe G., Man G., Jhaveri J., Berg A.H., Schwartz J., Kahn A., Wagner S., Sturm J.C. // Appl. Phys. Lett. 2015. V. 106. N 12. P. 123906. doi 10.1063/1.4916540
- Wang X., Wu G., Zhou B., Shen J. // Materials (Basel, Switzerland). 2013. V. 6. N 7. P. 2819-2830. doi 10.3390/ma6072819
- Ju Y., Li L., Wu Z., Jiang Y. // Energy Procedia. 2011. V. 12. P. 450-455. doi 10.1016/j.egypro.2011.10.060
- Hoskins B.D., Strukov D.B. // J. Vacuum Science \& Technology A: Vacuum, Surfaces, and Films. 2017. V. 35. N 2. P. 20606. doi 10.1116/1.4974140
- Dannenberg R., Greene P. // Thin Solid Films. 2000. V. 360. N 1-2. P. 122-127. doi 10.1016/S0040-6090(99)00938-4
- Shyjumon I., Gopinadhan M., Helm C.A., Smirnov B.M., Hippler R. // Thin Solid Films. 2006. V. 500. N 1-2. P. 41-51. doi 10.1016/j.tsf.2005.11.006
- Deskins N.A., Du J., Rao P. // Phys. Chem. Chem. Phys.: PCCP. 2017. V. 19. N 28. P. 18671-18684. doi 10.1039/c7cp02940c
- Sahbeni K., Sta I., Jlassi M., Kandyla M., Hajji M., Kompitsas M., Dimassi W. // J. Phys. Chem. \& Biophys. 2017. V. 7. N 03. doi 10.4172/2161-0398.1000257
- Chen H.-C., Lee K.-S., Lee C.-C. // Appl. Opt. 2008. V. 47. N 13. P. 284-7. doi 10.1364/AO.47.00C284
- Gallart M., Cottineau T., Honerlage B., Keller V., Keller N., Gilliot P. // J. Appl. Phys. 2018. V. 124. N 13. P. 133104. doi 10.1063/1.5043144
- Bulyarskiy S.V., Gorelik V.S., Gusarov G.G., Koiva D.A., Lakalin A.V. // Opt. Spectrosc. 2020. V. 128. N 5. P. 590-595. doi 10.1134/S0030400X20050057
- Zhao J., Jia C., Duan H., Li H., Xie E. // J. Alloys Compd. 2008. V. 461. N 1-2. P. 447-450. doi 10.1016/j.jallcom.2007.07.018
- Stevanovic A., Buttner M., Zhang Z., Yates J.T. // J. American Chem. Soc. 2012. V. 134. N 1. P. 324-332. doi 10.1021/ja2072737
- Preclikova J., Galav r P., Trojanek F., Daniv s S., Rezek B., Gregora I., Nv emcova Y., Maly P. // J. Appl. Phys. 2010. V. 108. N 11. P. 113502. doi 10.1063/1.3512982
- Knorr F.J., Mercado C.C., McHale J.L. // J. Phys. Chem. C. 2008. V. 112. N 33. P. 12786-12794. doi 10.1021/jp8039934
- Wang X., Feng Z., Shi J., Jia G., Shen S., Zhou J., Li C. // Phys. Chem. Chem. Phys.: PCCP. 2010. V. 12. N 26. P. 7083-7090. doi 10.1039/b925277k
- Mercado C.C., Knorr F.J., McHale J.L. // ACS Nano. 2012. V. 6. N 8. P. 7270-7280. doi 10.1021/nn302392p
- Mercado C., Seeley Z., Bandyopadhyay A., Bose S., McHale J.L. // ACS Appl. Mater. \& Interfaces. 2011. V. 3. N 7. P. 2281-2288. doi 10.1021/am2006433
- Santara B., Giri P.K., Imakita K., Fujii M. // J. Phys. Chem. C. 2013. V. 117. N 44. P. 23402-23411. doi 10.1021/jp408249q
- Henderson M.A. // Surface Science. 1995. V. 343. N 1-2. L1156-L1160. doi 10.1016/0039-6028(95)00849-7
- Bulyarskiy S.V., Svetukhin V.V. // J. Nanoparticle Research. 2020. V. 22. N 12. doi 10.1007/s11051-020-05069-1
- Bulyarskiy S.V., Svetukhin V.V. // Silicon. 2020. V. 13 P. 3321-3327. doi 10.1007/s12633-020-00703-y
- Johnson W.L., Sankey O.F., Dow J.D. // Phys. Rev. B. 1984. V. 30. N 4. P. 2070-2073. doi 10.1103/PhysRevB.30.2070
- Scheiber P., Fidler M., Dulub O., Schmid M., Diebold U., Hou W., Aschauer U., Selloni A. // Phys. Rev. Lett. 2012. V. 109. N 13. P. 136103. doi 10.1103/PhysRevLett.109.136103
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.