Changes in the titanium oxide optical properties during crystallization
Bulyarskiy S. V.1, Koiva D. A.1, Gusarov G. G.1, Svetukhin V. V.2
1 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
2Scientific-Manufacturing Complex «Technological Centre», Zelenograd, Moscow, Russia
Email: bulyar2954@mail.ru, dkoiva616@gmail.com, geog1@mail.ru, svetukhin@mail.ru

PDF
Crystallization of amorphous titanium oxide films synthesized by magnetron sputtering was carried out at temperatures of 700, 800, and 900oC in an oxygen atmosphere. The refractive index of the films increases during crystallization with a time constant that depends on temperature, which made it possible to determine the activation energy of the crystallization process on the order of 0.6 eV. The growth kinetics model for the titanium oxide nanocrystals, which is used in this work, showed that the indicated activation energy corresponds to the diffusion energy of oxygen vacancies. This process is decisive for the growth of titanium oxide nanocrystals upon annealing in an oxygen atmosphere. The study of photoluminescence has shown that crystallization leads to a change in the ratio of intensities of different emission bands. The bands that are associated with the oxygen vacancy are extinguished. A decrease in the concentration of these vacancies in films leads to an increase in their resistance and stabilization of the films in time. Keywords: titanium oxide films, crystallization, refractive index, photoluminescence.
  1. Obstarczyk A., Kaczmarek D., Wojcieszak D., Mazur M., Domaradzki J., Kotwica T., Pastuszek R., Schmeisser D., Mazur P., Kot M.T. // Materials \& Design. 2019. V. 175. P. 107822. doi 10.1016/j.matdes.2019.107822
  2. Jiang S.S., He G., Gao J., Xiao D.Q., Jin P., Li W.D., Lv J.G., Liu M., Liu Y.M., Sun Z.Q. // Ceramics International. 2016. V. 42. N 10. P. 11640-11649. doi 10.1016/j.ceramint.2016.04.067
  3. Carpenter M.A., Mathur S., Kolmakov A. Metal Oxide Nanomaterials for Chemical Sensors. NY.: Springer, 2013
  4. Avasthi S., McClain W.E., Man G., Kahn A., Schwartz J., Sturm J.C. // Appl. Phys. Lett. 2013. V. 102. N 20. P. 203901. doi 10.1063/1.4803446
  5. Nagamatsu K.A., Avasthi S., Sahasrabudhe G., Man G., Jhaveri J., Berg A.H., Schwartz J., Kahn A., Wagner S., Sturm J.C. // Appl. Phys. Lett. 2015. V. 106. N 12. P. 123906. doi 10.1063/1.4916540
  6. Wang X., Wu G., Zhou B., Shen J. // Materials (Basel, Switzerland). 2013. V. 6. N 7. P. 2819-2830. doi 10.3390/ma6072819
  7. Ju Y., Li L., Wu Z., Jiang Y. // Energy Procedia. 2011. V. 12. P. 450-455. doi 10.1016/j.egypro.2011.10.060
  8. Hoskins B.D., Strukov D.B. // J. Vacuum Science \& Technology A: Vacuum, Surfaces, and Films. 2017. V. 35. N 2. P. 20606. doi 10.1116/1.4974140
  9. Dannenberg R., Greene P. // Thin Solid Films. 2000. V. 360. N 1-2. P. 122-127. doi 10.1016/S0040-6090(99)00938-4
  10. Shyjumon I., Gopinadhan M., Helm C.A., Smirnov B.M., Hippler R. // Thin Solid Films. 2006. V. 500. N 1-2. P. 41-51. doi 10.1016/j.tsf.2005.11.006
  11. Deskins N.A., Du J., Rao P. // Phys. Chem. Chem. Phys.: PCCP. 2017. V. 19. N 28. P. 18671-18684. doi 10.1039/c7cp02940c
  12. Sahbeni K., Sta I., Jlassi M., Kandyla M., Hajji M., Kompitsas M., Dimassi W. // J. Phys. Chem. \& Biophys. 2017. V. 7. N 03. doi 10.4172/2161-0398.1000257
  13. Chen H.-C., Lee K.-S., Lee C.-C. // Appl. Opt. 2008. V. 47. N 13. P. 284-7. doi 10.1364/AO.47.00C284
  14. Gallart M., Cottineau T., Honerlage B., Keller V., Keller N., Gilliot P. // J. Appl. Phys. 2018. V. 124. N 13. P. 133104. doi 10.1063/1.5043144
  15. Bulyarskiy S.V., Gorelik V.S., Gusarov G.G., Koiva D.A., Lakalin A.V. // Opt. Spectrosc. 2020. V. 128. N 5. P. 590-595. doi 10.1134/S0030400X20050057
  16. Zhao J., Jia C., Duan H., Li H., Xie E. // J. Alloys Compd. 2008. V. 461. N 1-2. P. 447-450. doi 10.1016/j.jallcom.2007.07.018
  17. Stevanovic A., Buttner M., Zhang Z., Yates J.T. // J. American Chem. Soc. 2012. V. 134. N 1. P. 324-332. doi 10.1021/ja2072737
  18. Preclikova J., Galav r P., Trojanek F., Daniv s S., Rezek B., Gregora I., Nv emcova Y., Maly P. // J. Appl. Phys. 2010. V. 108. N 11. P. 113502. doi 10.1063/1.3512982
  19. Knorr F.J., Mercado C.C., McHale J.L. // J. Phys. Chem. C. 2008. V. 112. N 33. P. 12786-12794. doi 10.1021/jp8039934
  20. Wang X., Feng Z., Shi J., Jia G., Shen S., Zhou J., Li C. // Phys. Chem. Chem. Phys.: PCCP. 2010. V. 12. N 26. P. 7083-7090. doi 10.1039/b925277k
  21. Mercado C.C., Knorr F.J., McHale J.L. // ACS Nano. 2012. V. 6. N 8. P. 7270-7280. doi 10.1021/nn302392p
  22. Mercado C., Seeley Z., Bandyopadhyay A., Bose S., McHale J.L. // ACS Appl. Mater. \& Interfaces. 2011. V. 3. N 7. P. 2281-2288. doi 10.1021/am2006433
  23. Santara B., Giri P.K., Imakita K., Fujii M. // J. Phys. Chem. C. 2013. V. 117. N 44. P. 23402-23411. doi 10.1021/jp408249q
  24. Henderson M.A. // Surface Science. 1995. V. 343. N 1-2. L1156-L1160. doi 10.1016/0039-6028(95)00849-7
  25. Bulyarskiy S.V., Svetukhin V.V. // J. Nanoparticle Research. 2020. V. 22. N 12. doi 10.1007/s11051-020-05069-1
  26. Bulyarskiy S.V., Svetukhin V.V. // Silicon. 2020. V. 13 P. 3321-3327. doi 10.1007/s12633-020-00703-y
  27. Johnson W.L., Sankey O.F., Dow J.D. // Phys. Rev. B. 1984. V. 30. N 4. P. 2070-2073. doi 10.1103/PhysRevB.30.2070
  28. Scheiber P., Fidler M., Dulub O., Schmid M., Diebold U., Hou W., Aschauer U., Selloni A. // Phys. Rev. Lett. 2012. V. 109. N 13. P. 136103. doi 10.1103/PhysRevLett.109.136103

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru