Influence of discharge chamber parameters on the efficiency of ozone generation by pulsed corona discharge
Filatov I. E.
1, Surkov Yu. S.
1, Kuznetsov D. L.
11Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
Email: fil@iep.uran.ru, yus@iep.uran.ru, kdl@iep.uran.ru
The article discusses ways to increase the efficiency of ozone production in a coaxial chamber using a pulsed corona discharge. The effect of the discharge gap and the diameter of the potential electrode on the energy efficiency of ozone production using a pulsed corona discharge of negative polarity with duration of 40 ns and voltage of about 100 kV was investigated. It is shown that with an increase in the discharge gap, the productivity of the installation decreases, and the energy efficiency increases. The optimal diameter of the potential electrode has a value of about 0.64 mm. This information will be useful in the development of highly efficient ozonators and in optimizing the parameters of plasma-chemical reactors for air purification by electro-discharge methods. Keywords: pulsed corona discharge, ozone, non-equilibrium plasma, ozonator.
- S. Jodpimai, S. Boonduang, P. Limsuwan, J. Electrostat., 74, 108 (2015). DOI: 10.1016/j.elstat.2014.12.003
- Y. Zhu, C. Chen, J. Shi, W. Shangguan, Chem. Eng. Sci., 227, 115910 (2020). DOI: 10.1016/j.ces.2020.115910
- M. Li, Y. Yan, Q. Jin, M. Liu, B. Zhu, L. Wang, Y.M. Zhu, Vacuum, 157, 249 (2018). DOI: 10.1016/j.vacuum.2018.08.058
- B. Mennad, Z. Harrache, D.A. Aid, A. Belasri, Curr. Appl. Phys., 10 (6), 1391 (2010). DOI: 10.1016/j.cap.2010.04.013
- D. Yuan, Z. Wang, Y. He, S. Xie, F. Lin, Y. Zhu, K. Cen, Ozone Sci. Eng., 40 (6), 494 (2018). DOI: 10.1080/01919512.2018.1476127
- T.L. Sung, S. Teii, C.M. Liu, R.C. Hsiao, P.C. Chen, Y.H. Wu, K. Ebihara, Vacuum, 90, 65 (2013). DOI: 10.1016/j.vacuum.2012.10.003
- B. Liu, J. Ji, B. Zhang, W. Huang, Y. Gan, D.Y. Leung, H. Huang, J. Hazard. Mater., 422, 126847 (2022). DOI: 10.1016/j.jhazmat.2021.126847
- H. Fukuoka, S. Iida, D. Wang, T. Namihira, in 2019 IEEE Pulsed Power \& Plasma Science (PPPS) (IEEE, 2019), p. 1. DOI: 10.1109/PPPS34859.2019.9009782
- T. Huiskamp, W.F.L.M. Hoeben, F.J.C.M. Beckers, E.J.M. Van Heesch, A.J.M. Pemen, J. Phys. D: Appl. Phys., 50 (40), 405201 (2017). DOI: 10.1088/1361-6463/aa8617
- I.M. Piskarev, High Energy Chem., 54 (3), 205 (2020). DOI: 10.1134/S001814392003011X
- F. Fukawa, N. Shimomura, T. Yano, S. Yamanaka, K. Teranishi, H. Akiyama, IEEE Trans. Plasma Sci., 36 (5), 2592 (2008). DOI: 10.1109/TPS.2008.2004372
- A. Pokryvailo, M. Wolf, Y. Yankelevich, IEEE Trans. Dielectr. Electr. Insul., 14 (4), 846 (2007). DOI: 10.1109/TDEI.2007.4286515
- I.E. Filatov, V.V. Urvarin, E.V. Nikiforova, D.L. Kuznetsov, J. Phys.: Conf. Ser., 2064, 012094 (2021). DOI: 10.1088/1742-6596/2064/1/012094
- T.I. Poznyak, I.C. Oria, A.S. Poznyak, Ozonation and biodegradation in environmental engineering (Elsevier, 2019), p. 325--349. DOI: 10.1016/B978-0-12-812847-3.00021-4
- I. Filatov, V. Uvarin, D. Kuznetsov, in 2020 7th Int. Congress on energy fluxes and radiation effects (EFRE) (IEEE, 2020), p. 317. DOI: 10.1109/EFRE47760.2020.9242056
- I. Filatov, V. Uvarin, D. Kuznetsov, in 2020 7th Int. Congress on energy fluxes and radiation effects (EFRE) (IEEE, 2020), p. 322. DOI: 10.1109/EFRE47760.2020.9242070
- S.N. Rukin, Rev. Sci. Instrum., 91 (1), 011501 (2020). DOI: 10.1063/1.5128297
- I.E. Filatov, V.V. Uvarin, D.L. Kuznetsov, Tech. Phys., 63 (5), 680 (2018). DOI: 10.1134/S1063784218050079
- I.E. Filatov, V.V. Uvarin, D.L. Kuznetsov, Tech. Phys. Lett., 46 (1), 94 (2020). DOI: 10.1134/S1063785020010216
- L.T. Molina, J. Geophys. Res.: Atmospheres, 91 (D13), 14501 (1986). DOI: 10.1029/JD091iD13p14501
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.