Structure formation and depolarization relaxation processes in porous piezoactive polyvinylidene fluoride films
Gerasimov D. I.
1, Kuryndin I. S.
1, Lavrentyev V. K.
1, Volgina E. A.
2, Temnov D. E.
2, Elyashevich G. K.
11Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
2Herzen State Pedagogical University of Russia, St. Petersburg, Russia
Email: dmitrygerasimov1997@gmail.com, isk76@mail.ru, lavrentev1949@mail.ru, volgina.elena.1999@mail.ru, tde@herzen.spb.ru, elya@hq.macro.ru
Piezoactive porous polyvinylidene fluoride films prepared in the process based on melt extrusion with subsequent isometric annealing, uniaxial extension and thermal fixation have been studied. It was shown that two competing orientation processes -polymorphous transition of non-polar α-phase into polar piezoactive β-phase and formation of porous structure - occur during the uniaxial extension of annealed films. It has been established that orientation degree of extruded films is the key factor determining the efficiency of both processes. Thermally stimulated depolarization method was used to investigate the dipole relaxation in oriented films, and activation energy of these processes was found. The films were polarized using corona discharge and high-voltage contact methods, both, and the dependence of piezoelectric modulus on the polarization conditions has been obtained. The maximum value of piezoelectric modulus d31=30.1 pC/N was achieved by polarization of films in corona discharge method. Keywords: polyvinylidene fluoride, porous films, supramolecular structure, piezoelectric properties, polarization, relaxation processes.
- L. Yu, P. Zhou, D. Wu, L. Wang, L. Lin, D. Sun. Microsyst. Technol. 25, 3151 (2019)
- K. Shi, B. Sun, X. Huang, P. Jiang. Nano Energy 52, 153 (2018)
- F.R. Fan, W. Tang, Z.L. Wang. Adv. Mater. 28, 4283 (2016)
- W. Deng, T. Yang, L. Jin, C. Yan, H. Huang, X. Chu, Z. Wang, D. Xiong, G. Tian, Y. Gao. Nano Energy 55, 516 (2019)
- Y. Hu, W. Kang, Y. Fang, L. Xie, L. Qiu, T. Jin. Appl. Sci. 8, 836 (2018)
- Al. Ahmad, U.R. Farooqui, N.A. Hamid. Polymer 142, 330 (2018)
- L. Ahmadian-Alam, H. Mahdavi. Polym. Adv. Technol. 29, 8, 2287 (2018)
- E. Fukada, T. Furukawa. Ultrasonics 19, 31 (1981)
- M. Jungin, MP. Hee, K. Eunjoo. J. Ind. Eng. Chem. 65, 112 (2018)
- Ed. Basset. Development in Crystalline Polymers. Applied Science Publisher, London (1982). P. 195-261
- A.J. Lovinger. Science 220, 4602, 1115 (1983)
- M.M. Nasef, H. Saidi, K.Z.M. Dahlan. J. Polym. Degrad. Stab. 75, 1, 85 (2002)
- X. He, K. Yao. Appl. Phys. Lett. 89, 11, 112909 (2006)
- S. Satapathy, S. Pawar, P.K. Gupta, K.B.R. Varma. Bull. Mater. Sci. 34, 4, 727 (2011)
- R. Gerhard-Multhaupt. Proceedings 11 th Int. Symp. Electr. 36, (2002)
- C. Lei, B. Hu, R. Xu, Q. Cai, W. Shi. J. Appl. Polymer Sci. 131, 7, 40077 (2014)
- M. Shulin, G. Zhihao, W. Rongyan, T. Jie, M.Z. Jian. Polym. Adv. Technol. 32, 2397 (2021)
- G.K. Elyashevich, D.I. Gerasimov, I.S. Kuryndin, V.K. Lavrentyev, E.Y. Rosova, M.E. Vylegzhanina. Coatings 12, 51 (2022)
- G.K. Elyashevich, E.Yu. Rozova, E.A. Karpov. Patent of the Russian Federation N 2140936 (1997)
- D.I. Gerasimov, I.S. Kuryndin, V.K. Lavrentyev, D.E. Temnov, G.K. Elyashevich. AIP Conf. Proc. 2308, 030001-1 (2020)
- I.Yu. Dmitriev, V. Bukov sek, V.K. Lavrentyev, G.K. Elyashevich. Acta Chim. Slov. 54, 784 (2007)
- G.K. Elyashevich, I.S. Kuryndin, I.Yu. Dmitriev, V.K. Lavrentyev, N.N. Saprykina, V. Bukov sek. Chin. J. Polym. Sci. 37, 1283 (2019)
- T. Yamada, T. Mizutani, M. Ieda. J. Phys. D 15, 289 (1982)
- A.F. Butenko, A.E. Sergeeva, S.N. Fedosov. Fotoelektronika 15, 77 (2006)
- N. Karasawa, W.A. Goddard. Macromolecules 28, 6765 (1995)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.