Physics of the Solid State
Volumes and Issues
The Influence of Ti Doping at the Mn Site on Magnetoresistance and Thermopower Properties of Nd0.5Ca0.5MnO3
Anand A.1, Manjuladevi M.1, Veena R. K.1, Veena V.S.1, Sagar S.1
1Department of Physics, Govt College for Women, Vazhuthacaud, Research Centre, University of Kerala, Thiruvananthapuram, Kerala, India
Email: sagargcw@gmail.com

PDF
Nd-Ca-based manganite Nd0.5Ca0.5MnO3 and 10% Ti-doped manganite Nd0.5Ca0.5Ti0.1Mn0.9O3 denoted by N and N0.1, respectively, were prepared using solid-state reaction method. Resistivity gets increased for the Ti-doped sample. The parent compound N has remarkably high magnetoresistance. The highest value of Seebeck coefficient for N is -97 μVK-1 at 143 K and for N0.1 is -207 μVK-1 at 203 K. Variable range hopping mechanism successfully explains the high temperature resistivity and thermopower data. Keywords: magnetoresistance, thermoelectric power, rare-earth based manganites, manganites.
  1. T.J. Seebeck. Abhand. Deut. Akad. Wiss., 265 (1822)
  2. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen. Energy Environ. Sci. 2, 5, 466 (2009). http://dx.doi.org/10.1039/b822664b
  3. G.S. Nolas, J. Shar, and H. Goldsmid. Thermoelectrics: Basic Principles and New Materials Developments. Springer, N. Y. (2001)
  4. D. Rowe (Ed.). Thermoelectrics Handbook: Macro to Nano. CRC Press, Boca Raton (2006)
  5. A. Anand, M. Manjuladevi, R.K. Veena, V.S. Veena, Y.S. Koshkid'ko, and S.J. Sagar. J. Magn. Magn. Mater. 528, 167810 (2021). https://doi.org/10.1016/j.jmmm.2021.167810
  6. F. Millange, S. de Brion, and G. Chouteau. Phys. Rev. B 62, 9, 5619 (2000). https://doi.org/10.1103/PhysRevB.62.5619
  7. H. Trabelsi. J. Rare Earths 38, 10, 1076 (2020). https://doi.org/10.1016/j.jre.2019.10.004
  8. A. Anand, M. Manjuladevi, R.K. Veena, V.S. Veena, Y.S. Koshkid'ko, and S. Sagar. Mater. Res. Bull. 145, 111512 (2022). https://doi.org/10.1016/j.materresbull.2021.111512
  9. L.S. Sharath Chandra, A. Lakhani, D. Jain, S. Pandya, P.N. Vishwakarma, M. Gangrade, and V. Ganesan. Rev. Sci. Instrum. 79, 10, 103907 (2008). https://doi.org/10.1063/1.3002426
  10. Y. Sun, X. Xu, and Y. Zhang. J. Phys.: Condens. Matter 12, 50, 10475 (2000). https://doi.org/10.1088/0953-8984/12/50/309
  11. S. Banik, K. Das, T. Paramanik, N. Prasad Lalla, B. Satpati, K. Pradhan, and I. Das. NPG Asia Mater. 10, 923 (2018). https://doi.org/10.1038/s41427-018-0085-7
  12. A. Mansingh and A. Dhawan. J. Phys. C 11, 16, 3439 (1978). http://dx.doi.org/10.1088/0022-3719/11/16/013
  13. Y. Kalyana Lakshmi, K. Raju, and P. Venugopal Reddy. J. Appl. Phys. 113, 16, 163701 (2013). https://doi.org/10.1063/1.4802436

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru