Influence of intragranular Meissner currents and magnetic flux trapped in granules on the effective field in the intergranular medium and the magnetoresistance hysteresis of a granular HTSC
Balaev D. A.
1, Semenov S.V.
1, Gokhfeld D. M.
11Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: dabalaev@iph.krasn.ru, svsemenov@iph.krasn.ru, gokhfeld@iph.krasn.ru
The concept of an effective field in an intergranular medium is used to describe the hysteresis magnetoresistance of granular HTSCs. This effective field is a superposition of the external magnetic field and the field induced by the magnetic moments of the superconducting granules. The magnetic moment of the granules is contributed by the shielding currents and the trapped magnetic flux. We studied and analyzed the effect of the trapped flux on the magnetoresistance. It has been experimentally shown that the dependence of the residual resistance RRem (after applying of the external field) on the trapped flux clearly correlates with the behavior of the remanent magnetization. In addition, special attention was paid to a detailed comparison of the magnetoresistance of the granular YBa2Cu3O7-delta for two cases: (a) the magnetization of HTSC-granules is caused only by the trapped magnetic flux (in a zero external field) and (b) HTSC-granules are in the Meissner state (the external field is smaller than the first critical field of the granules). It has been found that Abrikosov vortices and intragranular Meissner currents differently affect the effective field in the intergranular medium (for the same values (of magnetization for cases (a) and (b) ). A possible reason for this difference is discussed. Keywords: granular HTSC, magnetoresistance hysteresis, magnetization hysteresis, trapped flux, screening currents.
- Pratima, S. Vats. J. Supercond. Nov. Magn. (2022). https://doi.org/10.1007/s10948-022-06206-8
- K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H.S. Yu, J. Yuan, L. Shan, F.V. Kusmartsev, R.L. Greene, I. Takeuchi. Nature Commun. 6, 7183 (2015). https://doi.org/10.1038/ncomms8183
- M.A. Olutas, A. Kilic, K. Kilic, A. Altinkok. J. Supercond. Nov. Magn. 26, 3369 (2013)
- V.V. Derevyanko, M.S. Sungurov, T.V. Sukhareva, V.A. Finkel', Yu.N. Shakhov. Phys. Solid State 59, 229 (2017)
- X. Zhu, H. Yang, L. Fang, G. Mu, H.-H. Wen. Supercond. Sci. Technol. 21 (2008) 105001
- A. Altinkok, K. Kilic, M. Olutas, A. Kilic. J. Supercond. Nov. Magn. 26, 3085 (2013). https://doi.org/10.1007/s10948-013-2139-y
- A.A. Bykov, K.Yu. Terent'ev, D.M. Gokhfeld, N.E. Savitskaya, S.I. Popkov, M.I. Petrov. J. Supercond. Nov. Magn. 31, 3867 (2018)
- K.A. Shaikhutdinov, D.A. Balaev, S.I. Popkov, M.I. Petrov. Supercond. Sci. Technol. 20, 491 (2007)
- I. Pallecchi, C. Tarantini, Y. Shen, R.K. Singh, N. Newman, P. Cheng, Y. Jia, H.-H. Wen, M. Putti. Supercond. Sci. Technol. 31, 034007 (2018). doi.org/10.1088/1361-6668/aaaaa6
- D.M. Gokhfeld, D.A. Balaev, S.V. Semenov, M.I. Petrov. Phys. Solid State 57, 11, 2145 (2015). DOI: 10.1134/S1063783415110128
- A. Palau, T. Puig, X. Obradors, E. Pardo, C. Navau, A. Sanchez, A. Usoskin, H.C. Freyhardt, L. Fernandez, B. Holzapfel, R. Feenstra. Appl. Phys. Lett. 84, 230 (2004). https://doi.org/10.1063/1.1639940
- D.A. Balaev, A.G. Prus, K.A. Shaukhutdinov, D.M. Gokhfeld, M.I. Petrov. Supercond. Sci. Technol. 20, 495 (2007). https://doi.org/10.1088/0953-2048/20/6/002
- M.I. Eremets, V.S. Minkov, A.P. Drozdov, P.P. Kong, V. Ksenofontov, S.I. Shylin, S.L. Bud'ko, R. Prozorov, F.F. Balakirev, Dan Sun, S. Mozaffari, L. Balicas. J. Supercond.Nov. Magn. 35, 965 (2022)
- I.A. Troyan, D.V. Semenok, A.G. Kvashnin, A.V. Sadakov, O.A. Sobolevskiy, V.M. Pudalov, A.G. Ivanova, V.B. Prakapenka, E. Greenberg, A.G. Gavriliuk, I.S. Lyubutin, V.V. Struzhkin, A. Bergara, I. Errea, R. Bianco, M. Calandra, F. Mauri, L. Monacelli, R. Akashi, A.R. Oganov. Adv. Mater. 2006832 (2021)
- L. Ji, M.S. Rzchowski, N. Anand, M. Tinkham. Phys. Rev. B 47, 470 (1993). https://doi.org/10.1103/PhysRevB.47.470
- M.I. Petrov, D.A. Balaev, K.A. Shaikhutdinov, K.S. Aleksandrov. Supercond. Sci. Technol. 14, 798 (2001). https://doi.org/10.1088/0953-2048/14/9/333
- G.L. Bhalla, Pratima, A. Malik, K.K. Singh. Physica C 391, 17 (2003). https://doi.org/10.1016/S0921-4534(03)00805-0
- D. Lopez, R. Decca, F. de la Cruz. Supercond. Sci. Technol. 5, 276 (1992). https://doi.org/10.1088/0953-2048/5/1S/061
- M. Prester. Supercond. Sci. Technol. 11, 333 (1998)
- D.A. Balaev, S.I. Popkov, S.V. Semenov, A.A. Bykov, E.I. Sabitova, A.A. Dubrovskiy, K.A. Shaikhutdinov, M.I. Petrov. J. Supercond. Nov. Magn., 24, 2129 (2011)
- D.A. Balaev, A.A. Dubrovskii, K.A. Shaykhutdinov, S.I. Popkov, D.M. Gokhfeld, Yu.S. Gokhfeld, M.I. Petrov. JETP 108, 241 (2009). https://doi.org/10.1134/S106377610902006X
- D.A. Balaev, S.I. Popkov, S.V. Semenov, A.A. Bykov, K.A. Shaykhutdinov, D.M. Gokhfeld, M.I. Petrov. Physica C 470, 61 (2010). https://doi.org/10.1016/j.physc.2009.10.007
- D.A. Balaev, S.I. Popkov, E.I. Sabitova, S.V. Semenov, K.A. Shaykhutdinov, A.V. Shabanov, M.I. Petrov. J. Appl. Phys. 110, 093918 (2011). https://doi.org/10.1063/1.3657775
- D.A. Balaev, A.A. Bykov, S.V. Semenov, S.I. Popkov, A.A. Dubrovskii, K.A. Shaykhutdinov, M.I. Petrov. Phys. Solid State 53, 922 (2011). https://doi.org/10.1134/S1063783411050052
- D.A. Balaev, S.V. Semenov, M.I. Petrov. J. Supercond. Nov. Magn. 27, 1425 (2014). https://doi.org/10.1007/s10948-014-2491-6
- D.A. Balaev, S.V. Semenov, M.A. Pochekutov. J. Appl. Phys. 122, 123902 (2017). https://doi.org/10.1063/1.4986253
- S.V. Semenov, D.A. Balaev. Physica C 550, 19 (2018). https://doi.org/10.1016/j.physc.2018.04.005
- S.V. Semenov, D.A. Balaev. J. Supercond. Nov. Magn. 32, 2409 (2019). https://doi.org/10.1007/s10948-019-5043-2
- S.V. Semenov, D.A. Balaev. Phys. Solid State 62, 1136 (2020). https://doi.org/10.1134/S1063783420070239
- T.V. Sukhareva, V.A. Finkel. J. Exp. JETP Phys. 107, 787 (2008)
- V.V. Derevyanko, T.V. Sukhareva, V.A. Finkel'. Phys. Solid State 60, 470 (2018)
- T.V. Sukhareva, V.A. Finkel. JETP Lett. 108, 243 (2018)
- T.V. Sukhareva, V.A. Finkel. J. Low Temp. Phys. 44, 194 (2018)
- T.V. Sukhareva, V.A. Finkel. J. Low Temp. Phys. 46, 550 (2020)
- J. Barzola-Quiquia, S. Dusari, C. Chiliotte, P. Esquinazi. J. Supercond. Nov. Magn. 24, 463 (2011). https://doi.org/10.1007/s10948-010-0973-8
- C. Tien, C.S. Wur, K.J. Lin, E.V. Charnaya, Yu.A. Kumzerov. Phys. Rev. B 61, 12, 14834 (2000)
- A.A. Shikov, M.G. Zemlyanov, P.P. Parshin, A.A. Naberezhnov, Yu.A. Kumzerov. Phys. Solid State 54, 2345 (2012). https://doi.org/10.1134/S106378341212030X
- D.A. Balaev, A.A. Dubrovskiy, S.I. Popkov, K.A. Shaikhutdinov, O.N. Mart'yanovc, M.I. Petrov. J. Exp. JETP Phys. 110, 4, 584 (2010)
- J.E. Hirsh. J. Supercond. Nov. Magn. (2022). https://doi.org/10.1007/s10948-022-06340-3
- V.V. Derevyanko, T.V. Sukhareva, V.A. Finkel. Tech. Phys. 53, 321 (2008). https://doi.org/10.1134/S1063784208030067
- T.V. Sukhareva, V.A. Finkel. Phys. Solid State 50, 1001 (2008). https://doi.org/10.1134/S1063783408060012
- D. Daghero, P. Mazzetti, A. Stepanescu, P. Tura. Phys. Rev. B 66, 11478 (2002). https://doi.org/10.1103/PhysRevB.66.184514
- S.V. Semenov, A.D. Balaev, D.A. Balaev. J. Appl. Phys. 125, 033903 (2019). https://doi.org/10.1063/1.5066602
- D.A. Balaev, S.V. Semenov, D.M. Gokhfeld. J. Supercond. Nov. Magn. 34, 1067 (2021). https://doi.org/10.1007/s10948-021-05812-2
- J. Jung, M.-K. Mohamed, S.C. Cheng, J.P. Franck. Phys. Rev. B. 42, 6181 (1990)
- B. Andrzejewski, E. Guilmeau, C. Simon. Supercond. Sci. Technol. 14, 904 (2001)
- F. Perez, X. Obradors, J. Fontcuberta, X. Bozec, A. Fert. Supercond. Sci. Technol. 9, 161 (1996)
- D.-X. Chen, R.W. Cross, A. Sanchez. Cryogenics 33, 7, 695 (1993). https://doi.org/10.1016/0011-2275(93)90022-G
- D.M. Gokhfeld. Phys. Solid State 56, 2380 (2014). https://doi.org/10.1134/S1063783414120129
- D.M. Gokhfeld. Tech. Phys. Lett. 45, 1 (2019). https://doi.org/10.1134/S1063785019010243
- C. Bohmer, G. Brandstatter, H.W. Weber. Supercond. Sci. Technol. 10, A1 (1997)
- R. Liang, P. Dosanjh, D.A. Bonn, W.N. Hardy, A.J. Berlinsky. Phys. Rev. B 50, 7, 4212 (1994)
- G. Blatter, M.V. Feigel'man, V.B. Gekshkebein, A.I. Larkin, V.M. Vinokur. Rev. Mod. Phys. 66, 1125 (1994). https://doi.org/10.1103/RevModPhys.66.1125
- D.H. Liebenberg, R.J. Soulen, T.L. Francavilla, W.W. Fuller-Mora, P.C. McIntyre, M.J. Cima. Phys. Rev. B 51, 11838 (1995). https://doi.org/10.1103/ PhysRevB.51.11838
- S.V. Semenov, D.M. Gokhfel'd, K.Yu. Terent'ev, D.A. Balaev. Phys. Solid State, 63, 12, 1785 (2021). DOI: 10.1134/S1063783421100334
- A. Umezawa, G.W. Crabtree, J.Z. Liu, T.J. Moran, S.K. Malik, L.H. Nunez, W.L. Kwok, C.H. Sowers. Phys. Rev. B 38, 4, 2843 (1988)
- S.J. Bending, M.J.W. Dodgson. J. Phys.: Condens. Matter 17, R955 (2005). DOI: 10.1088/0953-8984/17/35/R01
- D.M. Gokhfeld, D.A. Balaev. Phys. Solid State 62, 7, 1145 (2020). DOI: 10.1134/S1063783420070069
- M.R. Koblischka, S.P. Kumar Naik, A. Koblischka-Veneva, M. Murakami, D.M. Gokhfeld, E.S. Reddy, G.J. Schmitz. Materials 12, 6, 853 (2019). https://doi.org/10.3390/ma12060853
- M.R. Koblischka, S.P. Kumar Naik, A. Koblischka-Veneva, D.M. Gokhfeld, M. Murakami. Supercond. Sci. Technol. 33, 4, 044008( 2020). https://doi.org/10.1088/1361-6668/ab72c3
- Y. Yeshurun, A.P. Malozemoff, A. Shaulov. Rev. Mod. Phys. 68, 911 (1996). https://doi.org/10.1103/RevModPhys.68.911
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.