Physics of the Solid State
Volumes and Issues
Influence of intragranular Meissner currents and magnetic flux trapped in granules on the effective field in the intergranular medium and the magnetoresistance hysteresis of a granular HTSC
Balaev D. A.1, Semenov S.V.1, Gokhfeld D. M. 1
1Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: dabalaev@iph.krasn.ru, svsemenov@iph.krasn.ru, gokhfeld@iph.krasn.ru

PDF
The concept of an effective field in an intergranular medium is used to describe the hysteresis magnetoresistance of granular HTSCs. This effective field is a superposition of the external magnetic field and the field induced by the magnetic moments of the superconducting granules. The magnetic moment of the granules is contributed by the shielding currents and the trapped magnetic flux. We studied and analyzed the effect of the trapped flux on the magnetoresistance. It has been experimentally shown that the dependence of the residual resistance RRem (after applying of the external field) on the trapped flux clearly correlates with the behavior of the remanent magnetization. In addition, special attention was paid to a detailed comparison of the magnetoresistance of the granular YBa2Cu3O7-delta for two cases: (a) the magnetization of HTSC-granules is caused only by the trapped magnetic flux (in a zero external field) and (b) HTSC-granules are in the Meissner state (the external field is smaller than the first critical field of the granules). It has been found that Abrikosov vortices and intragranular Meissner currents differently affect the effective field in the intergranular medium (for the same values (of magnetization for cases (a) and (b) ). A possible reason for this difference is discussed. Keywords: granular HTSC, magnetoresistance hysteresis, magnetization hysteresis, trapped flux, screening currents.
  1. Pratima, S. Vats. J. Supercond. Nov. Magn. (2022). https://doi.org/10.1007/s10948-022-06206-8
  2. K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H.S. Yu, J. Yuan, L. Shan, F.V. Kusmartsev, R.L. Greene, I. Takeuchi. Nature Commun. 6, 7183 (2015). https://doi.org/10.1038/ncomms8183
  3. M.A. Olutas, A. Kilic, K. Kilic, A. Altinkok. J. Supercond. Nov. Magn. 26, 3369 (2013)
  4. V.V. Derevyanko, M.S. Sungurov, T.V. Sukhareva, V.A. Finkel', Yu.N. Shakhov. Phys. Solid State 59, 229 (2017)
  5. X. Zhu, H. Yang, L. Fang, G. Mu, H.-H. Wen. Supercond. Sci. Technol. 21 (2008) 105001
  6. A. Altinkok, K. Kilic, M. Olutas, A. Kilic. J. Supercond. Nov. Magn. 26, 3085 (2013). https://doi.org/10.1007/s10948-013-2139-y
  7. A.A. Bykov, K.Yu. Terent'ev, D.M. Gokhfeld, N.E. Savitskaya, S.I. Popkov, M.I. Petrov. J. Supercond. Nov. Magn. 31, 3867 (2018)
  8. K.A. Shaikhutdinov, D.A. Balaev, S.I. Popkov, M.I. Petrov. Supercond. Sci. Technol. 20, 491 (2007)
  9. I. Pallecchi, C. Tarantini, Y. Shen, R.K. Singh, N. Newman, P. Cheng, Y. Jia, H.-H. Wen, M. Putti. Supercond. Sci. Technol. 31, 034007 (2018). doi.org/10.1088/1361-6668/aaaaa6
  10. D.M. Gokhfeld, D.A. Balaev, S.V. Semenov, M.I. Petrov. Phys. Solid State 57, 11, 2145 (2015). DOI: 10.1134/S1063783415110128
  11. A. Palau, T. Puig, X. Obradors, E. Pardo, C. Navau, A. Sanchez, A. Usoskin, H.C. Freyhardt, L. Fernandez, B. Holzapfel, R. Feenstra. Appl. Phys. Lett. 84, 230 (2004). https://doi.org/10.1063/1.1639940
  12. D.A. Balaev, A.G. Prus, K.A. Shaukhutdinov, D.M. Gokhfeld, M.I. Petrov. Supercond. Sci. Technol. 20, 495 (2007). https://doi.org/10.1088/0953-2048/20/6/002
  13. M.I. Eremets, V.S. Minkov, A.P. Drozdov, P.P. Kong, V. Ksenofontov, S.I. Shylin, S.L. Bud'ko, R. Prozorov, F.F. Balakirev, Dan Sun, S. Mozaffari, L. Balicas. J. Supercond.Nov. Magn. 35, 965 (2022)
  14. I.A. Troyan, D.V. Semenok, A.G. Kvashnin, A.V. Sadakov, O.A. Sobolevskiy, V.M. Pudalov, A.G. Ivanova, V.B. Prakapenka, E. Greenberg, A.G. Gavriliuk, I.S. Lyubutin, V.V. Struzhkin, A. Bergara, I. Errea, R. Bianco, M. Calandra, F. Mauri, L. Monacelli, R. Akashi, A.R. Oganov. Adv. Mater. 2006832 (2021)
  15. L. Ji, M.S. Rzchowski, N. Anand, M. Tinkham. Phys. Rev. B 47, 470 (1993). https://doi.org/10.1103/PhysRevB.47.470
  16. M.I. Petrov, D.A. Balaev, K.A. Shaikhutdinov, K.S. Aleksandrov. Supercond. Sci. Technol. 14, 798 (2001). https://doi.org/10.1088/0953-2048/14/9/333
  17. G.L. Bhalla, Pratima, A. Malik, K.K. Singh. Physica C 391, 17 (2003). https://doi.org/10.1016/S0921-4534(03)00805-0
  18. D. Lopez, R. Decca, F. de la Cruz. Supercond. Sci. Technol. 5, 276 (1992). https://doi.org/10.1088/0953-2048/5/1S/061
  19. M. Prester. Supercond. Sci. Technol. 11, 333 (1998)
  20. D.A. Balaev, S.I. Popkov, S.V. Semenov, A.A. Bykov, E.I. Sabitova, A.A. Dubrovskiy, K.A. Shaikhutdinov, M.I. Petrov. J. Supercond. Nov. Magn., 24, 2129 (2011)
  21. D.A. Balaev, A.A. Dubrovskii, K.A. Shaykhutdinov, S.I. Popkov, D.M. Gokhfeld, Yu.S. Gokhfeld, M.I. Petrov. JETP 108, 241 (2009). https://doi.org/10.1134/S106377610902006X
  22. D.A. Balaev, S.I. Popkov, S.V. Semenov, A.A. Bykov, K.A. Shaykhutdinov, D.M. Gokhfeld, M.I. Petrov. Physica C 470, 61 (2010). https://doi.org/10.1016/j.physc.2009.10.007
  23. D.A. Balaev, S.I. Popkov, E.I. Sabitova, S.V. Semenov, K.A. Shaykhutdinov, A.V. Shabanov, M.I. Petrov. J. Appl. Phys. 110, 093918 (2011). https://doi.org/10.1063/1.3657775
  24. D.A. Balaev, A.A. Bykov, S.V. Semenov, S.I. Popkov, A.A. Dubrovskii, K.A. Shaykhutdinov, M.I. Petrov. Phys. Solid State 53, 922 (2011). https://doi.org/10.1134/S1063783411050052
  25. D.A. Balaev, S.V. Semenov, M.I. Petrov. J. Supercond. Nov. Magn. 27, 1425 (2014). https://doi.org/10.1007/s10948-014-2491-6
  26. D.A. Balaev, S.V. Semenov, M.A. Pochekutov. J. Appl. Phys. 122, 123902 (2017). https://doi.org/10.1063/1.4986253
  27. S.V. Semenov, D.A. Balaev. Physica C 550, 19 (2018). https://doi.org/10.1016/j.physc.2018.04.005
  28. S.V. Semenov, D.A. Balaev. J. Supercond. Nov. Magn. 32, 2409 (2019). https://doi.org/10.1007/s10948-019-5043-2
  29. S.V. Semenov, D.A. Balaev. Phys. Solid State 62, 1136 (2020). https://doi.org/10.1134/S1063783420070239
  30. T.V. Sukhareva, V.A. Finkel. J. Exp. JETP Phys. 107, 787 (2008)
  31. V.V. Derevyanko, T.V. Sukhareva, V.A. Finkel'. Phys. Solid State 60, 470 (2018)
  32. T.V. Sukhareva, V.A. Finkel. JETP Lett. 108, 243 (2018)
  33. T.V. Sukhareva, V.A. Finkel. J. Low Temp. Phys. 44, 194 (2018)
  34. T.V. Sukhareva, V.A. Finkel. J. Low Temp. Phys. 46, 550 (2020)
  35. J. Barzola-Quiquia, S. Dusari, C. Chiliotte, P. Esquinazi. J. Supercond. Nov. Magn. 24, 463 (2011). https://doi.org/10.1007/s10948-010-0973-8
  36. C. Tien, C.S. Wur, K.J. Lin, E.V. Charnaya, Yu.A. Kumzerov. Phys. Rev. B 61, 12, 14834 (2000)
  37. A.A. Shikov, M.G. Zemlyanov, P.P. Parshin, A.A. Naberezhnov, Yu.A. Kumzerov. Phys. Solid State 54, 2345 (2012). https://doi.org/10.1134/S106378341212030X
  38. D.A. Balaev, A.A. Dubrovskiy, S.I. Popkov, K.A. Shaikhutdinov, O.N. Mart'yanovc, M.I. Petrov. J. Exp. JETP Phys. 110, 4, 584 (2010)
  39. J.E. Hirsh. J. Supercond. Nov. Magn. (2022). https://doi.org/10.1007/s10948-022-06340-3
  40. V.V. Derevyanko, T.V. Sukhareva, V.A. Finkel. Tech. Phys. 53, 321 (2008). https://doi.org/10.1134/S1063784208030067
  41. T.V. Sukhareva, V.A. Finkel. Phys. Solid State 50, 1001 (2008). https://doi.org/10.1134/S1063783408060012
  42. D. Daghero, P. Mazzetti, A. Stepanescu, P. Tura. Phys. Rev. B 66, 11478 (2002). https://doi.org/10.1103/PhysRevB.66.184514
  43. S.V. Semenov, A.D. Balaev, D.A. Balaev. J. Appl. Phys. 125, 033903 (2019). https://doi.org/10.1063/1.5066602
  44. D.A. Balaev, S.V. Semenov, D.M. Gokhfeld. J. Supercond. Nov. Magn. 34, 1067 (2021). https://doi.org/10.1007/s10948-021-05812-2
  45. J. Jung, M.-K. Mohamed, S.C. Cheng, J.P. Franck. Phys. Rev. B. 42, 6181 (1990)
  46. B. Andrzejewski, E. Guilmeau, C. Simon. Supercond. Sci. Technol. 14, 904 (2001)
  47. F. Perez, X. Obradors, J. Fontcuberta, X. Bozec, A. Fert. Supercond. Sci. Technol. 9, 161 (1996)
  48. D.-X. Chen, R.W. Cross, A. Sanchez. Cryogenics 33, 7, 695 (1993). https://doi.org/10.1016/0011-2275(93)90022-G
  49. D.M. Gokhfeld. Phys. Solid State 56, 2380 (2014). https://doi.org/10.1134/S1063783414120129
  50. D.M. Gokhfeld. Tech. Phys. Lett. 45, 1 (2019). https://doi.org/10.1134/S1063785019010243
  51. C. Bohmer, G. Brandstatter, H.W. Weber. Supercond. Sci. Technol. 10, A1 (1997)
  52. R. Liang, P. Dosanjh, D.A. Bonn, W.N. Hardy, A.J. Berlinsky. Phys. Rev. B 50, 7, 4212 (1994)
  53. G. Blatter, M.V. Feigel'man, V.B. Gekshkebein, A.I. Larkin, V.M. Vinokur. Rev. Mod. Phys. 66, 1125 (1994). https://doi.org/10.1103/RevModPhys.66.1125
  54. D.H. Liebenberg, R.J. Soulen, T.L. Francavilla, W.W. Fuller-Mora, P.C. McIntyre, M.J. Cima. Phys. Rev. B 51, 11838 (1995). https://doi.org/10.1103/ PhysRevB.51.11838
  55. S.V. Semenov, D.M. Gokhfel'd, K.Yu. Terent'ev, D.A. Balaev. Phys. Solid State, 63, 12, 1785 (2021). DOI: 10.1134/S1063783421100334
  56. A. Umezawa, G.W. Crabtree, J.Z. Liu, T.J. Moran, S.K. Malik, L.H. Nunez, W.L. Kwok, C.H. Sowers. Phys. Rev. B 38, 4, 2843 (1988)
  57. S.J. Bending, M.J.W. Dodgson. J. Phys.: Condens. Matter 17, R955 (2005). DOI: 10.1088/0953-8984/17/35/R01
  58. D.M. Gokhfeld, D.A. Balaev. Phys. Solid State 62, 7, 1145 (2020). DOI: 10.1134/S1063783420070069
  59. M.R. Koblischka, S.P. Kumar Naik, A. Koblischka-Veneva, M. Murakami, D.M. Gokhfeld, E.S. Reddy, G.J. Schmitz. Materials 12, 6, 853 (2019). https://doi.org/10.3390/ma12060853
  60. M.R. Koblischka, S.P. Kumar Naik, A. Koblischka-Veneva, D.M. Gokhfeld, M. Murakami. Supercond. Sci. Technol. 33, 4, 044008( 2020). https://doi.org/10.1088/1361-6668/ab72c3
  61. Y. Yeshurun, A.P. Malozemoff, A. Shaulov. Rev. Mod. Phys. 68, 911 (1996). https://doi.org/10.1103/RevModPhys.68.911

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru