Project of a two-mirror monochromator for the photon energy range 8-36 keV for the "SKIF" synchrotron
Chkhalo N.I.1, Garakhin S.A.1, Malyshev I.V.1, Polkovnikov V.N.1, Toropov M.N.1, Salashchenko N.N.1, Ulasevich B.A.1, Rakshun Ya.V.2, Chernov V.A.2, Dolbnya I.P.3, Raschenko S.V.4
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
2Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
3Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, OX11 0DE, Didcot, Oxfordshire, United Kingdom
4Sobolev Institute of Geology and Mineralogy, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russia
Email: chkhalo@ipmras.ru
A project of an X-ray monochromator for the "SKIF" synchrotron based on two flat mirrors with multilayer reflective coatings is reported. The concept of the monochromator is based on the absence of precision mechanical systems and feedthroughs in vacuum, which significantly reduces mirror surface contamination and increases scanning accuracy. In addition, the overall structure of the device is greatly simplified in this way, which in turn leads to a significant reduction in the total cost and labor for manufacturing. The grazing angle of incidence of radiation on the mirrors in the process of scanning by photon energy varies within 0.5-1.3o. The length of the mirrors is 120 mm, the assumed size of the input beam is 1x1 mm2. A wide operating energy range, 8-36 keV, is achieved through the use of 3 strip-mirrors with coatings of different chemical composition, namely: Mo/B4C, W/B4C and Cr/Be. The article presents the X-ray optical scheme, the expected reflection coefficients and spectral selectivity of the monochromator, the results of the calculation of thermally induced surface deformations and the corresponding slope errors of the first mirror. Keywords: synchrotron radiation, multilayer mirror, monochromator, surface.
- S.J. Leake, G.A. Chahine, H. Djazouli, T. Zhou, C. Richter, J. Hilhorst, L. Petit, M.-I. Richard, C. Morawe, R. Barrett, L. Zhang, R.A. Homs-Regojo, V. Favre-Nicolin, P. Boesecke, T.U. Schulli. J. Synchrotron Rad., 26, 571-584 (2019). https://doi.org/10.1107/S160057751900078X
- B. Wu, A. Kumar. Appl. Phys. Rev., 1, 011104 (2014). https://doi.org/10.1063/1.4863412
- I.V. Malyshev, N.I. Chkhalo. Ultramicroscopy, 202, 76-86 (2019). DOI: 10.1016/j.ultramic.2019.04.001
- U.H. Wagner, Z.D. Pev sic, A. De Fanis, C. Rau. J. Phys. Conf. Ser., 425, 182006 (2013). DOI: 10.1088/1742-6596/425/18/182006
- M.N. Boone, F. Van Assche, S. Vanheule, S. Cipiccia, H. Wang, L. Vinczec, L. Van Hoorebeke. J. Synchrotron Rad., 27, 110-118 (2020). https://doi.org/10.1107/S1600577519015212
- S.V. Rashchenko, M.A. Skamarokha, G.N. Baranov, Y.V. Zubavichus, I.V. Rakshun. AIP Conf. Proc., 2299, 060001 (2020). https://doi.org/10.1063/5.0030346
- P. Brumund, J. Reyes-Herrera, C. Morawe, T. Dufrane, H. Isern, T. Brochard, M. Sanchez del Rio, C. Detlefs. J. Synchrotron Rad., 28, 1423-1436 (2021). DOI: 10.1107/S160057752100758X
- A. Rack, Ch. Morawe, L. Mancini, D. Dreossi, D.Y. Parkinson, A.A. MacDowell, F. Siewert, T. Rack, T. Holz, M. Kramer, R. Dietsch. Proc. SPIE, 9207, 92070V (2014). DOI: 10.1117/12.2060801
- M.S. Bibishkin, N.I. Chkhalo, A.A. Fraerman, A.E. Pestov, K.A. Prokhorov, N.N. Salashchenko, Yu.A. Vainer. Nucl. Instrum. Meth. A, 543, 333-339 (2005). DOI: 10.1016/j.nima.2005.01.251
- R. Pleshkov, N. Chkhalo, V. Polkovnikov, M. Svechnikov, M. Zorina. J. Appl. Crystallogr., 54 (6), 1747 (2021). https://doi.org/10.1107/S160057672101027X
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.