Pustovarov V. A.
1, Gritsenko V. A.
2, Islamov D. R.
21Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
2Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: v.a.pustovarov@urfu.ru, grits@isp.nsc.ru, damir@isp.nsc.ru
Using the methods of low-temperature luminescence spectroscopy and vacuum ultraviolet synchrotron radiation (MAX IV synchrotron, Lund, Sweden), charge transfer processes and the nature of charge carrier traps responsible for leakage currents in nanometer dielectric films of hafnium-zirconium-oxygen HfxZr1-xO2 solid solutions on silicon substrate, as well as in films doped with La-ions and annealed in argon atmosphere. The photoluminescence spectra, photoluminescence excitation spectra of the 2.7 eV emission band and previous simulation data within the framework of density functional theory confirm the presence of an oxygen vacancy in the studied films. Based on the study of competing channels for the relaxation of electronic excitations due to the radiative decay of self-trapped excitons (4.35 eV emission band) and the luminescence of defects (2.7 and 3.5 eV emission bands), a conclusion was made about the efficiency of transport and capture of excitons and separate charge carriers in films with varying degrees of defectiveness and films doped with lanthanum. The obtained data confirm the conclusion that oxygen vacancies are traps responsible for leakage currents in the films under study Keywords: Luminescence, synchrotron radiation, defects, energy transfer.
- J. Muller, T.S. Boscke, U. Schrooder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, T. Mikolajick. Nano Lett. 12, 4318 (2012)
- A. Chernikova, M. Kozodaev, A. Markeev, D. Negrov, M. Spiridonov, S. Zarubin, O. Bak, P. Buragohain, H. Lu, E. Suvorova, A. Gruverman, A. Zenkevich. ACS Appl. Mater. Interfaces 8, 11, 7232 (2016)
- T.V. Perevalov, I.P. Prosvirin, E.A. Suprun, F. Mehmood, T. Mikolajick, U. Schroeder, V.A. Gritsenko. J. Sci.: Adv. Mater. Devices 6, 595 (2021)
- T.V. Perevalov, A.A. Gismatulin, V.A. Gritsenko, I.P. Prosvirin, F. Mehmood, T. Mikolajick, U. Schroder. Appl. Phys. Lett. 118, 262903 (2021)
- D.R. Islamov, V.A. Gritsenko, T.V. Perevalov, V.A. Pustovarov, O.M. Orlov, A.G. Chernikova, A.M. Markeev, S. Slesazeck, U. Schroder, T. Mikolajick, G.Ya. Krasnikov. Acta Mater. 166, 47 (2019)
- V.A. Gritsenko, D.R. Islamov, T.V. Perevalov, V.Sh. Aliev, A.P. Yelisseyev, E.E. Lomonova, V.A. Pustovarov, A. Chin. J. Phys. Chem. C 120, 19980 (2016)
- J. Aarik, H. Mandar, M. Kirm, L. Pung. Thin Solid Films 466, 41 (2004)
- M. Kirm, J. Aarik, M. Jurgens, I. Sildos. Nucl. Instrum. Meth. Phys. Res. A 537, 251 (2005)
- V.A. Pustovarov, T.P. Smirnova, M.S. Lebedev, V.A. Gritsenko, M. Kirm. J. Lumin. 170, 1, 161 (2016)
- V. Pankratov, R. Parna, M. Kirm, V. Nagirnyi, E. Nommiste, S. Omelkov, S. Vielhauer, K. Chernenko, L. Reisberg, P. Turunen, A. Kivimaki, E. Kukk, M. Valden, M. Huttula. Rad. Meas. 121, 91 (2019)
- K. Chernenko, A. Kivimaki, R. Parna, W. Wang, R. Sankari, M. Leandersson, H. Tarawne, V. Pankratov, M. Kook, E. Kukk, L. Reisberg, S. Urpelainen, T. Kambre, F. Siewert, G. Gwalt, A. Sokolov, S. Lemke, S. Alimov, J. Knedel, O. Kutz, T. Seliger, M. Valden, M. Hirsimaki, M. Kirm, M. Huttula. J. Synchrotron Rad. 28, 1620 (2021)
- R. Parna, R. Sankari, E. Kukk, E. Nommiste, M. Valden, M. Lastusaari, K. Koosera, K. Kokko, M. Hirsimaki, S. Urpelainen, P. Turunen, A. Kivimaki, V. Pankratov, L. Reisberg, F. Hennies, H. Tarawneh, R. Nyholm, M. Huttul. Nucl. Instrum. Meth. Phys. Res. A 859, 83 (2017)
- V.N. Kruchinin, T.V. Perevalov, V.Sh. Aliev, R.M.Kh. Iskhakzai, E.V. Spesivtsev, V.A. Gritsenko, V.A. Pustovarov. Optika i spektroskopiya 128, 10, 1467 (2020) (in Russian)
- D. Spassky, S. Omelkov, H. Magi, V. Mikhailin, A. Vasil'ev, N. Krutyak, I. Tupitsyna, A. Dubovik, A. Yakubovskaya, A. Belsky. Opt. Mater. 36, 1660 (2014)
- V.V. Mikhailin. Nucl. Instrum. Meth. Phys. Res. A 261, 107 (1987)
- K.A. Nasyrov, V.A. Gritsenko. ZhETF 139, 1172 (2011) (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.