Structural, Opto-Physical, Photoluminescence, and Optical Limiting Properties of Polyvinyl (Pyrrolidone and Alcohol) Blend Film Doped with Co-Metal
Ali H Elhosiny.1,2,3, Khairy Y.2, Abdellahi M. O.3, Sayed M. A.3,4, Abd-Rabboh H S. M.5,6, Awwad N. S.5, Shkir M.3, Abdel-Aziz M. M.7
1Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, P.O. Box, Saudi Arabia
2Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
3Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box, Abha, Saudi Arabia
4Physics Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
5Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
6Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
7Department of Physics, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
Email: hithamph@gmail.com
The optical properties of polyvinyl (pyrrolidine and alcohol) and PV(P/A) blend polymer have been improved using Co-metal as a filler for optoelectronic and optical shielding applications. The casting technique of solutions was used in order to prepare composite films with different Co-ratios (x: 0-18.5). XRD, FT-IR, SEM, and UV-visible spectrophotometry were operated to study the structure, morphology, and optical features of the flexible plain blend and composite films. The semi-crystalline nature of the films was influenced by the filler ratio of nanoparticles. Homogenous dispersion with some agglomeration of Co-particles has been observed in the host blend matrix. Then again, a successful interaction between the host matrix and particles was ensured by the FT-IR spectroscopic and XRD measurements. The cut-off absorbance edge of composite films is red-shifted from 200 nm (host blend) to 228 nm. The indirect transition optical band gap was confirmed from the Tauc's and optical dielectric loss calculations. Its value goes back from 5.15 eV (plain blend) to 4.43 eV for 18.5 wt% Co-blend composite film. An improvement in the extinction coefficient, optical conductivity, and refractive index of the composite films was achieved compared with the plain blend. The non-linear parameters of the composites were also enhanced. Photoluminescence (PL) emission spectra of PV(P/A) blend films doped with various weight percentages of Co-metal were examined at a wavelength of 750 nm. The optical shielding performance of the prepared composites is recommended for laser cut-off. Furthermore, the ability to tailor the optical properties of blend film makes it more effective for various applications including optical devices, non-linear optoelectronics, and reflective coating. Keywords: extinction coefficient, PV(P/A) polymer blend, transition band gap, photoluminescence, NL optical parameters, optical shielding.
- A.Y. Yassin. J. Mater. Sci.: Mater Electron. 31, 21, 19447 (2020). https://doi.org/10.1007/s10854-020-04478-1
- N.M. Deghiedy, S.M. El-Sayed. Opt. Mater. 100, 109667 (2020). https://doi.org/10.1016/j.optmat.2020.109667
- M.T. Ramesan, M. Varghese, P. Jayakrishnan, P. Periyat. Adv. Polymer Techol. 37, 1, 137 (2018). https://doi.org/10.1002/adv.21650
- X. Wang, C.G. Bazuin, and C. Pellerin. Polymer 57, 62 (2015). https://doi.org/10.1016/j.polymer.2014.12.006
- K. Rajesh, V. Crasta, N.B. Rithin Kumar, G. Shetty, and P.D. Rekha. J. Polymer Res. 26, 4, 99 (2019). https://doi.org/10.1007/s10965-019-1762-0
- N. AbuBakar, C.Y. Chee, L.C. Abdullah, C.T. Ratnam and N.A. Ibrahim. Mater. Design (1980-2015) 65, 204 (2015). https://doi.org/10.1016/j.matdes.2014.09.027
- H. Elhosiny Ali, and Y. Khairy. Physica B 570, 10, 41 (2019). https://doi.org/10.1016/j.physb.2019.05.050
- H. Elhosiny Ali, H. Algarni, and Y. Khairy. Opt. Mater. 108, 110212 (2020). https://doi.org/10.1016/j.optmat.2020.110212
- H. Elhosiny Ali, and Y. Khairy. Opt. Laser Technol. 136, 106736 (2021). https://doi.org/10.1016/j.optlastec.2020.106736
- M.M. Abdel-Aziz, H. Algarni, A.M. Alshehri, I.S. Yahia and H. Elhosiny Ali. Mater. Res. Express 6, 12, 125321 (2019). http://dx.doi.org/10.1088/2053-1591/ab56d8
- S.O. Aisida, I. Ahmad, and F.I. Ezema. Physica B 579, 2, 411907 (2020). https://doi.org/10.1016/j.physb.2019.411907
- A. Badawi. Appl. Phys. A 126, 5, 335 (2020). https://doi.org/10.1007/s00339-020-03514-5
- S. Mallakpour, and S. Mansourzadeh. Ultrasonics Sonochem. 43, 91 (2018). https://doi.org/10.1016/j.ultsonch.2017.12.052
- K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A.-A. AlMaadeed, R.R. Deshmukh, S.K. Khadheer Pasha, A.R. Polu, and K. Chidambaram. J. Appl. Polymer Sci. 134, 5, 44427 (2017). https://doi.org/10.1002/app.44427
- B.M. Baraker, and B. Lobo. Can. J. Phys. 95, 8, 738 (2017). https://doi.org/10.1139/cjp2016-0848
- H.E. Ali, H.S.M. Abd-Rabboh, N.S. Awwad, H. Algarni, M.A. Sayed, A.F.A. El-Rehim, M.M. Abdel-Aziz, and Y. Khairy. Optik 247, 167863 (2021). https://doi.org/10.1016/j.ijleo.2021.167863
- S. Choudhary. J. Mater. Sci.: Mater Electron. 29, 12, 10517 (2018). https://doi.org/10.1007/s10854-018-9116-y
- A. Kumbhar, L. Spinu, A. Agnoli, K.-Y. Wang, W.L. Zhou, and C.J. O'Connor. IEEE Trans. Magn. 37, 4, 2216 (2001). https://doi.org/10.1109/20.951128
- H.A. Hagelin-Weaver, G.B. Hoflund, D.M. Minahan, and G.N. Salaita. Appl. Surf. Sci. 235, 4, 420 (2004). https://doi.org/10.1016/j.apsusc.2004.02.062
- N.A.M. Barakat, M.S. Khil, F.A. Sheikh, and H.Y. Kim. J. Phys. Chem. C 112, 32, 12225 (2008). https://doi.org/10.1021/jp8027353
- M. Manjunatha, G. Srinivas Reddy, K.J. Mallikarjunaiah, R. Damle, and K.P. Ramesh. J. Supercond. Nov. Magn. 32, 3201 (2019). https://doi.org/10.1007/s10948-019-5083-7
- R.M. Ahmed, A.A. Ibrahiem, and E.A. El-Said. Opt. Spectroscop. 128, 5, 642 (2020). https://doi.org/10.1134/S0030400X20050033
- E.M. Abdelrazek, I.S. Elashmawi, A. El-Khodary, and A. Yassin. Curr. Appl. Phys. 10, 2, 607 (2010). https://doi.org/10.1016/j.cap.2009.08.005
- M.T. Ramesan, P. Jayakrishnan, T. Anilkumar, and G. Mathew. J. Mater. Sci.: Mater Electron. 29, 3, 1992 (2018). https://doi.org/10.1007/s10854-017-8110-0
- H. Elhosiny Ali, M.M. Abdel-Aziz, H. Algarni, I.S. Yahia and Y. Khairy. J. Inorg. Organomet. Polymer Mater. 31, 4, 1503 (2021). https://doi.org/10.1007/s10904-020-01785-2
- M. Manjunatha, G.S. Reddy, K.J. Mallikarjunaiah, R. Damle and K.P. Ramesh. J. Supercond. Novel Magn. 32, 10, 3201 (2019). https://doi.org/10.1007/s10948-019-5083-7
- S. Choudhary, and R.J. Sengwa. Curr. Appl Phys. 18, 9, 1041 (2018). https://doi.org/10.1016/j.cap.2018.05.023
- M. Irfan, A. Manjunath, S.S. Mahesh, R. Somashekar, and T. Demappa. J. Mater.Sci.: Mater Electron. 32, 5, 5520 (2021). https://doi.org/10.1007/s10854-021-05274-1
- V. Siva, D. Vanitha, A. Murugan, A. Shameem, and S.A. Bahadur. Compos. Commun. 23, 100597 (2021). https://doi.org/10.1016/j.coco.2020.100597
- H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, and A.E. Tarabiah. J. Mater. Res. Technol. 8, 1, 904 (2019). https://doi.org/10.1016/j.jmrt.2018.04.023
- Q. Wei, Y. Zhang, Y. Wang, W. Chai, and M. Yang. Mater. Design 103, 249 (2016). https://doi.org/10.1016/j.matdes.2016.04.087
- E.M. Abdelrazek, I.S. Elashmawi, and S. Labeeb. Physica B 405, 8, 2021 (2010). https://doi.org/10.1016/j.physb.2010.01.095
- A. Hashim, and Q. Hadi. J. Inorg. Organomet. Polymer Mater. 28, 4, 1394 (2018). https://doi.org/10.1007/s10904-018-0837-4
- S.B. Aziz, M.A. Rasheed, A.M. Hussein, and H.M. Ahmed. Mater. Sci. Semicond. Proc. 71, 197 (2017). https://doi.org/10.1016/j.mssp.2017.05.035
- M.E. Sanchez Vergara, A. Ortiz Rebollo, J.R. Alvarez and M. Rivera. J. Phys. Chem. Solids 69, 1, 1 (2008). https://doi.org/10.1016/j.jpcs.2007.07.084
- M. Ghanipour, and D. Dorranian. J. Nanomater. 2013, 897043 (2013). https://doi.org/10.1155/2013/897043
- M.A. Morsi, A.H. Oraby, A.G. Elshahawy, and R.M. Abd El-Hady. J. Mater. Res. Technol. 8, 6, 5996 (2019). https://doi.org/10.1016/j.jmrt.2019.09.074
- H.E. Ali, M.M. Abdel-Aziz, Y. Khairy, H.Y. Zahran, H. Algarni, I.S. Yahia, E.F. El-Shamy, M.A. Sayed, F.A. Maged, and M.F. Sanaa. Physica Scripta 96, 11, 115804 (2021). http://dx.doi.org/10.1088/1402-4896/ac13e3
- P.K. Singh, S.K. Tripathi, and D.K. Dwivedi. Mater. Sci.-Poland 37, 4, 554 (2019). https://doi.org/10.2478/msp-2019-0061
- A.S. Hassanien, I.M. El Radaf, and A.A. Akl. J. Alloys. Compd. 849, 156718 (2020). https://doi.org/10.1016/j.jallcom.2020.156718
- N. Ahlawat, S. Sanghi, A. Agarwal, and S. Rani. J. Alloys. Compd. 480, 2, 516 (2009). https://doi.org/10.1016/j.jallcom.2009.01.116
- Y. Khairy, M.M. Abdel-Aziz, H. Algarni, A.M. Alshehri, I.S. Yahia, and H.E. Ali. Mater. Res. Exp. 6, 11, 115346 (2019). http://dx.doi.org/10.1088/2053-1591/ab4e34
- A.H. Ammar, A.A.M. Farag,, and M.S. Abo-Ghazala. J. Alloys. Compd. 694, 752 (2017). https://doi.org/10.1016/j.jallcom.2016.10.042
- C. Li, Q. Xiao, Y. Fu, Y. Liang, C. Liu, Y. Zhuang and L. Xia. J. Non-Crystal. Solids 552, 120453 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120453
- Y. Khairy, I.S. Yahia, and H. Elhosiny Ali. J. Mater. Sci.:Mater Electron. 31, 10, 8072 (2020). https://doi.org/10.1007/s10854-020-03348-0
- H.E. Ali, and Y. Khairy. Vacuum 180, 109640 (2020). https://doi.org/10.1016/j.vacuum.2020.109640
- H. Elhosiny Ali, H. Algarni, I.S. Yahia, and Y. Khairy. Chinese J. Phys. 72, 270 (2021). https://doi.org/10.1016/j.cjph.2021.04.022
- A. Hadi, A. Hashim, and Y. Al-Khafaji. Trans. Electrical. Electron. Mater. 21, 3, 283 (2020). https://doi.org/10.1007/s42341-020-00189-w
- A. Losche. Krist. Technik. 7, 4, K55 (1972). https://doi.org/10.1002/crat.19720070420
- F. Yakuphanoglu, and C. Viswanathan. J. Non-Cryst. Solids 353, 30, 2934 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.06.055
- R. Potzsch, B.C. Stahl, H. Komber, C.J.`Hawker, and B.I. Voit. Polym. Chem. 5, 8, 2911 (2014). http://dx.doi.org/10.1039/C3PY01740K
- H. Elhosiny Ali, I.S. Yahia, H. Algarni, and Y. Khairy. New J.Phys. 23, 4, 043001 (2021). https://doi.org/10.1088/1367-2630/abe614
- H. Bao, and X. Ruan. Int. J. Heat. Mass. Transfer 53, 7-8, 1308 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.033
- O.G. Abdullah, S.B. Aziz, K.M. Omer, and Y.M. Salih. J. Mater.Sci.: Mater Electron. 26, 7, 5303 (2015). https://doi.org/10.1007/s10854-015-3067-3
- F.M. Hossain, L. Sheppard, J. Nowotny, and G.E. Murch. J. Phys. Chem. Solids 69, 7, 1820 (2008). https://doi.org/10.1016/j.jpcs.2008.01.017
- V. Ganesh, I.S. Yahia, S. AlFaify, and M. Shkir. J. Phys. Chem. Solids 100, 115 (2017) https://doi.org/10.1016/j.jpcs.2016.09.022
- H. Elhosiny Ali, M.M. Abdel-Aziz, A.M. Nawar, H. Algarni, H.Y. Zahran, I.S. Yahia, and Y. Khairy. Polym. Adv. Technol. 32, 3, 1011 (2020). https://doi.org/10.1002/pat.5149
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.