Physics of the Solid State
Volumes and Issues
Structural, Opto-Physical, Photoluminescence, and Optical Limiting Properties of Polyvinyl (Pyrrolidone and Alcohol) Blend Film Doped with Co-Metal
Ali H Elhosiny.1,2,3, Khairy Y.2, Abdellahi M. O.3, Sayed M. A.3,4, Abd-Rabboh H S. M.5,6, Awwad N. S.5, Shkir M.3, Abdel-Aziz M. M.7
1Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, P.O. Box, Saudi Arabia
2Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
3Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box, Abha, Saudi Arabia
4Physics Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
5Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
6Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
7Department of Physics, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
Email: hithamph@gmail.com

PDF
The optical properties of polyvinyl (pyrrolidine and alcohol) and PV(P/A) blend polymer have been improved using Co-metal as a filler for optoelectronic and optical shielding applications. The casting technique of solutions was used in order to prepare composite films with different Co-ratios (x: 0-18.5). XRD, FT-IR, SEM, and UV-visible spectrophotometry were operated to study the structure, morphology, and optical features of the flexible plain blend and composite films. The semi-crystalline nature of the films was influenced by the filler ratio of nanoparticles. Homogenous dispersion with some agglomeration of Co-particles has been observed in the host blend matrix. Then again, a successful interaction between the host matrix and particles was ensured by the FT-IR spectroscopic and XRD measurements. The cut-off absorbance edge of composite films is red-shifted from 200 nm (host blend) to 228 nm. The indirect transition optical band gap was confirmed from the Tauc's and optical dielectric loss calculations. Its value goes back from 5.15 eV (plain blend) to 4.43 eV for 18.5 wt% Co-blend composite film. An improvement in the extinction coefficient, optical conductivity, and refractive index of the composite films was achieved compared with the plain blend. The non-linear parameters of the composites were also enhanced. Photoluminescence (PL) emission spectra of PV(P/A) blend films doped with various weight percentages of Co-metal were examined at a wavelength of 750 nm. The optical shielding performance of the prepared composites is recommended for laser cut-off. Furthermore, the ability to tailor the optical properties of blend film makes it more effective for various applications including optical devices, non-linear optoelectronics, and reflective coating. Keywords: extinction coefficient, PV(P/A) polymer blend, transition band gap, photoluminescence, NL optical parameters, optical shielding.
  1. A.Y. Yassin. J. Mater. Sci.: Mater Electron. 31, 21, 19447 (2020). https://doi.org/10.1007/s10854-020-04478-1
  2. N.M. Deghiedy, S.M. El-Sayed. Opt. Mater. 100, 109667 (2020). https://doi.org/10.1016/j.optmat.2020.109667
  3. M.T. Ramesan, M. Varghese, P. Jayakrishnan, P. Periyat. Adv. Polymer Techol. 37, 1, 137 (2018). https://doi.org/10.1002/adv.21650
  4. X. Wang, C.G. Bazuin, and C. Pellerin. Polymer 57, 62 (2015). https://doi.org/10.1016/j.polymer.2014.12.006
  5. K. Rajesh, V. Crasta, N.B. Rithin Kumar, G. Shetty, and P.D. Rekha. J. Polymer Res. 26, 4, 99 (2019). https://doi.org/10.1007/s10965-019-1762-0
  6. N. AbuBakar, C.Y. Chee, L.C. Abdullah, C.T. Ratnam and N.A. Ibrahim. Mater. Design (1980-2015) 65, 204 (2015). https://doi.org/10.1016/j.matdes.2014.09.027
  7. H. Elhosiny Ali, and Y. Khairy. Physica B 570, 10, 41 (2019). https://doi.org/10.1016/j.physb.2019.05.050
  8. H. Elhosiny Ali, H. Algarni, and Y. Khairy. Opt. Mater. 108, 110212 (2020). https://doi.org/10.1016/j.optmat.2020.110212
  9. H. Elhosiny Ali, and Y. Khairy. Opt. Laser Technol. 136, 106736 (2021). https://doi.org/10.1016/j.optlastec.2020.106736
  10. M.M. Abdel-Aziz, H. Algarni, A.M. Alshehri, I.S. Yahia and H. Elhosiny Ali. Mater. Res. Express 6, 12, 125321 (2019). http://dx.doi.org/10.1088/2053-1591/ab56d8
  11. S.O. Aisida, I. Ahmad, and F.I. Ezema. Physica B 579, 2, 411907 (2020). https://doi.org/10.1016/j.physb.2019.411907
  12. A. Badawi. Appl. Phys. A 126, 5, 335 (2020). https://doi.org/10.1007/s00339-020-03514-5
  13. S. Mallakpour, and S. Mansourzadeh. Ultrasonics Sonochem. 43, 91 (2018). https://doi.org/10.1016/j.ultsonch.2017.12.052
  14. K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A.-A. AlMaadeed, R.R. Deshmukh, S.K. Khadheer Pasha, A.R. Polu, and K. Chidambaram. J. Appl. Polymer Sci. 134, 5, 44427 (2017). https://doi.org/10.1002/app.44427
  15. B.M. Baraker, and B. Lobo. Can. J. Phys. 95, 8, 738 (2017). https://doi.org/10.1139/cjp2016-0848
  16. H.E. Ali, H.S.M. Abd-Rabboh, N.S. Awwad, H. Algarni, M.A. Sayed, A.F.A. El-Rehim, M.M. Abdel-Aziz, and Y. Khairy. Optik 247, 167863 (2021). https://doi.org/10.1016/j.ijleo.2021.167863
  17. S. Choudhary. J. Mater. Sci.: Mater Electron. 29, 12, 10517 (2018). https://doi.org/10.1007/s10854-018-9116-y
  18. A. Kumbhar, L. Spinu, A. Agnoli, K.-Y. Wang, W.L. Zhou, and C.J. O'Connor. IEEE Trans. Magn. 37, 4, 2216 (2001). https://doi.org/10.1109/20.951128
  19. H.A. Hagelin-Weaver, G.B. Hoflund, D.M. Minahan, and G.N. Salaita. Appl. Surf. Sci. 235, 4, 420 (2004). https://doi.org/10.1016/j.apsusc.2004.02.062
  20. N.A.M. Barakat, M.S. Khil, F.A. Sheikh, and H.Y. Kim. J. Phys. Chem. C 112, 32, 12225 (2008). https://doi.org/10.1021/jp8027353
  21. M. Manjunatha, G. Srinivas Reddy, K.J. Mallikarjunaiah, R. Damle, and K.P. Ramesh. J. Supercond. Nov. Magn. 32, 3201 (2019). https://doi.org/10.1007/s10948-019-5083-7
  22. R.M. Ahmed, A.A. Ibrahiem, and E.A. El-Said. Opt. Spectroscop. 128, 5, 642 (2020). https://doi.org/10.1134/S0030400X20050033
  23. E.M. Abdelrazek, I.S. Elashmawi, A. El-Khodary, and A. Yassin. Curr. Appl. Phys. 10, 2, 607 (2010). https://doi.org/10.1016/j.cap.2009.08.005
  24. M.T. Ramesan, P. Jayakrishnan, T. Anilkumar, and G. Mathew. J. Mater. Sci.: Mater Electron. 29, 3, 1992 (2018). https://doi.org/10.1007/s10854-017-8110-0
  25. H. Elhosiny Ali, M.M. Abdel-Aziz, H. Algarni, I.S. Yahia and Y. Khairy. J. Inorg. Organomet. Polymer Mater. 31, 4, 1503 (2021). https://doi.org/10.1007/s10904-020-01785-2
  26. M. Manjunatha, G.S. Reddy, K.J. Mallikarjunaiah, R. Damle and K.P. Ramesh. J. Supercond. Novel Magn. 32, 10, 3201 (2019). https://doi.org/10.1007/s10948-019-5083-7
  27. S. Choudhary, and R.J. Sengwa. Curr. Appl Phys. 18, 9, 1041 (2018). https://doi.org/10.1016/j.cap.2018.05.023
  28. M. Irfan, A. Manjunath, S.S. Mahesh, R. Somashekar, and T. Demappa. J. Mater.Sci.: Mater Electron. 32, 5, 5520 (2021). https://doi.org/10.1007/s10854-021-05274-1
  29. V. Siva, D. Vanitha, A. Murugan, A. Shameem, and S.A. Bahadur. Compos. Commun. 23, 100597 (2021). https://doi.org/10.1016/j.coco.2020.100597
  30. H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, and A.E. Tarabiah. J. Mater. Res. Technol. 8, 1, 904 (2019). https://doi.org/10.1016/j.jmrt.2018.04.023
  31. Q. Wei, Y. Zhang, Y. Wang, W. Chai, and M. Yang. Mater. Design 103, 249 (2016). https://doi.org/10.1016/j.matdes.2016.04.087
  32. E.M. Abdelrazek, I.S. Elashmawi, and S. Labeeb. Physica B 405, 8, 2021 (2010). https://doi.org/10.1016/j.physb.2010.01.095
  33. A. Hashim, and Q. Hadi. J. Inorg. Organomet. Polymer Mater. 28, 4, 1394 (2018). https://doi.org/10.1007/s10904-018-0837-4
  34. S.B. Aziz, M.A. Rasheed, A.M. Hussein, and H.M. Ahmed. Mater. Sci. Semicond. Proc. 71, 197 (2017). https://doi.org/10.1016/j.mssp.2017.05.035
  35. M.E. Sanchez Vergara, A. Ortiz Rebollo, J.R. Alvarez and M. Rivera. J. Phys. Chem. Solids 69, 1, 1 (2008). https://doi.org/10.1016/j.jpcs.2007.07.084
  36. M. Ghanipour, and D. Dorranian. J. Nanomater. 2013, 897043 (2013). https://doi.org/10.1155/2013/897043
  37. M.A. Morsi, A.H. Oraby, A.G. Elshahawy, and R.M. Abd El-Hady. J. Mater. Res. Technol. 8, 6, 5996 (2019). https://doi.org/10.1016/j.jmrt.2019.09.074
  38. H.E. Ali, M.M. Abdel-Aziz, Y. Khairy, H.Y. Zahran, H. Algarni, I.S. Yahia, E.F. El-Shamy, M.A. Sayed, F.A. Maged, and M.F. Sanaa. Physica Scripta 96, 11, 115804 (2021). http://dx.doi.org/10.1088/1402-4896/ac13e3
  39. P.K. Singh, S.K. Tripathi, and D.K. Dwivedi. Mater. Sci.-Poland 37, 4, 554 (2019). https://doi.org/10.2478/msp-2019-0061
  40. A.S. Hassanien, I.M. El Radaf, and A.A. Akl. J. Alloys. Compd. 849, 156718 (2020). https://doi.org/10.1016/j.jallcom.2020.156718
  41. N. Ahlawat, S. Sanghi, A. Agarwal, and S. Rani. J. Alloys. Compd. 480, 2, 516 (2009). https://doi.org/10.1016/j.jallcom.2009.01.116
  42. Y. Khairy, M.M. Abdel-Aziz, H. Algarni, A.M. Alshehri, I.S. Yahia, and H.E. Ali. Mater. Res. Exp. 6, 11, 115346 (2019). http://dx.doi.org/10.1088/2053-1591/ab4e34
  43. A.H. Ammar, A.A.M. Farag,, and M.S. Abo-Ghazala. J. Alloys. Compd. 694, 752 (2017). https://doi.org/10.1016/j.jallcom.2016.10.042
  44. C. Li, Q. Xiao, Y. Fu, Y. Liang, C. Liu, Y. Zhuang and L. Xia. J. Non-Crystal. Solids 552, 120453 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120453
  45. Y. Khairy, I.S. Yahia, and H. Elhosiny Ali. J. Mater. Sci.:Mater Electron. 31, 10, 8072 (2020). https://doi.org/10.1007/s10854-020-03348-0
  46. H.E. Ali, and Y. Khairy. Vacuum 180, 109640 (2020). https://doi.org/10.1016/j.vacuum.2020.109640
  47. H. Elhosiny Ali, H. Algarni, I.S. Yahia, and Y. Khairy. Chinese J. Phys. 72, 270 (2021). https://doi.org/10.1016/j.cjph.2021.04.022
  48. A. Hadi, A. Hashim, and Y. Al-Khafaji. Trans. Electrical. Electron. Mater. 21, 3, 283 (2020). https://doi.org/10.1007/s42341-020-00189-w
  49. A. Losche. Krist. Technik. 7, 4, K55 (1972). https://doi.org/10.1002/crat.19720070420
  50. F. Yakuphanoglu, and C. Viswanathan. J. Non-Cryst. Solids 353, 30, 2934 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.06.055
  51. R. Potzsch, B.C. Stahl, H. Komber, C.J.`Hawker, and B.I. Voit. Polym. Chem. 5, 8, 2911 (2014). http://dx.doi.org/10.1039/C3PY01740K
  52. H. Elhosiny Ali, I.S. Yahia, H. Algarni, and Y. Khairy. New J.Phys. 23, 4, 043001 (2021). https://doi.org/10.1088/1367-2630/abe614
  53. H. Bao, and X. Ruan. Int. J. Heat. Mass. Transfer 53, 7-8, 1308 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.033
  54. O.G. Abdullah, S.B. Aziz, K.M. Omer, and Y.M. Salih. J. Mater.Sci.: Mater Electron. 26, 7, 5303 (2015). https://doi.org/10.1007/s10854-015-3067-3
  55. F.M. Hossain, L. Sheppard, J. Nowotny, and G.E. Murch. J. Phys. Chem. Solids 69, 7, 1820 (2008). https://doi.org/10.1016/j.jpcs.2008.01.017
  56. V. Ganesh, I.S. Yahia, S. AlFaify, and M. Shkir. J. Phys. Chem. Solids 100, 115 (2017) https://doi.org/10.1016/j.jpcs.2016.09.022
  57. H. Elhosiny Ali, M.M. Abdel-Aziz, A.M. Nawar, H. Algarni, H.Y. Zahran, I.S. Yahia, and Y. Khairy. Polym. Adv. Technol. 32, 3, 1011 (2020). https://doi.org/10.1002/pat.5149

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru