Some features of the solving of hydrodynamic equations for solitary waves in the open water channel
Volobuev A.N.1
1Samara State Medical University, Samara, Russia
Email: volobuev47@yandex.r

PDF
The opportunity of use of an impulse equation special form for the solving of a problem of solitary waves (solitons) occurrence in the open water channel is considered. It is shown that the used of an impulse equation allows take into account a role of surface tension and gravitational forces in formation of waves. Using of the continuity equation expansion into series on Rayleigh's method the system of the differential equations is received, one of which is nonlinear. Application of Dalembert's method for running waves for the solving of the nonlinear differential equation in a hydrodynamic problem of solitary waves spreading in the open water channel is considered. It is shown that as against Dalembert's theory for the linear hyperbolic equations where initial conditions completely determine the form of arising waves, for the nonlinear equations the form of waves is determined by character of the equation nonlinearity. Thus during the solution of equations the sum of the functions describing linear waves extending in opposite directions, in the Dalembert's method for nonlinear waves is replaced with the sum of the nonlinear differential equations. Keywords: soliton, open water channel, surface tension, gravitational forces, nonlinear differential equation, Dalembert's method.
  1. M.J. Ablowitz, H. Segur. Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981)
  2. R.K. Dodd, J.C. Eilbeck, G.D. Gibbon, H.C. Morris. Solitons and Nonlinear Wave Equations (Harcort Brace Jovanovich, Publishers, London, NY., 1984)
  3. G.B. Whitham. Linear and Nonlinear Waves (Jon Wiley \& Sons, London, NY., 1974)
  4. A.I. Dyachenko, V.E. Zakharov. JETP Lett., 81 (6), 318 (2005)
  5. O.E. Kurkina, A.A. Kurkin, E.A. Ruvinskaja, E.N. Pelinovsky, T. Soomere. JETP Lett., 95 (2), 91 (2012)
  6. T.G. Elizarova, M.A. Istomina, N.K. Shelkovnikov. Mathem. Models and Computer Simulations, 24 (4), 107 (2012)
  7. B.M. Budak, A.A. Samarsky, A.N. Tikhonov. Sbornik zadach po matematicheskoy fizike (Nauka, M., 1980). 161 (in Russian)
  8. A.N. Volobuev. Mathem. Models and Computer Simulations, 12 (1), 53 (2020)
  9. L.D. Landau, E.M. Lifshits. Gidrodinamika (Nauka, M., 1986), vol. 6 (in Russian)
  10. V.G. Levich. Kurs teoreticheskoy fiziki (Physmatgiz, Moscow, 1962), vol. 1, p. 583 (in Russian)
  11. A.N. Volobuev. Osnovy meditsinskoy i biologicheskoy fiziki (OOO "Samara Press House", Samara, 2011), p. 86 (in Russian)
  12. T.J. Pedley. The Fluid Mechanics of Large Blood Vessels (Cambridge University Press, London--NY.--Rochelle--Melbourne--Sydney, 1980)
  13. Lord Rayleigh (J.W. Strutt). Philos. Mag. Ser., 5 (1), 257 (1876)
  14. A.N. Tikhonov, A.A. Samarsky. Uravneniya matematicheskoy fiziki (Nauka, M., 1972), p. 50 (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru