Influence of modifying elements on the structure and mechanical properties of casting Al-Si alloys
Osipov V. N.1
1Ioffe Institute, St. Petersburg, Russia
Email: osvn@mail.ioffe.ru

PDF
The state of scientific research on the modification of aluminum-silicon (Al-Si) alloy with strontium, sodium, phosphorus, which are widely employed in industrial alloys, and the modification of Al-Si alloy with intensively studied rare-earth elements (cerium, europium, samarium and others) was analyzed. Scientific articles related to the study of the effect of modifiers on the mechanical properties, mainly on the strength and ductility of hypoeutectic, eutectic and hypereutectic alloys was considered. On the basis of a literary data analysis, ways of improving the mechanical properties have been proposed by jointly modifying several elements, the possibility of forming the solely eutectic structure in the hypereutectic composition alloy 0.01 wt% strontium (Sr) modified and directionally crystallized at a rate that provides paired growth of the eutectic components is noted. This composition of Al-Si alloy has superfine-grained eutectic structure, its strength and ductility exceed the mechanical properties of Al-Si alloys obtained by other techniques. Keywords: rare-earth elements, eutectic, microstructure, elongation, tensile strength.
  1. N.A. Belov, S.V. Savchenko, V.D. Belov. Atlas mikrostruktur promyshlennykh siluminov: spravochnik (MISiS, Moskva, 2009) (in Russian)
  2. M. Warmuzek. Aluminum-Silicon Casting Alloys: an Atlas of Microfractographs (ASM Intern., Novelty, OH, 2004)
  3. S.P. Nikanorov, V.N. Osipov, L.I. Regel. J. Mater. Engin. Perform. (JMEPEG), 28 (12), 7302 (2019). https://doi.org/10.1007/s11665-019-04414-3
  4. S.P. Nikanorov, L.I. Derkachenko, B.K. Kardashev, B.N. Korchunov, V.N. Osipov, V.V. Shpeizman. Phys. Solid State, 55 (6), 1207 (2013). https://doi.org/10.1134/S1063783413060255
  5. M.H. Abdelaziz, A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel. J. Mater. Res. Technol., 8 (2), 2255 (2019). https://doi.org/10.1016/j.jmrt.2019.03.003
  6. M. Colombo, E. Gariboldi, A. Morri. J. Alloys Compounds, 708, 1234 (2017). https://doi.org/10.1016/j.jallcom.2017.03.076
  7. R. Haghayeghi, G. Timelli. Mater. Lett., 283, 128779 (2021). https://doi.org/10.1016/j.matlet.2020.128779
  8. Ching-Yi Yang, Sheng-Long Lee, Cheng-Kuo Lee, Jing-Chie Lin. Wear, 261, 1348 (2006). https://doi.org/10.1016/j.wear.2006.03.051
  9. S.A. Bagaber, T. Abdullahi, Z. Harun, N. Daib, M.H.D. Othman. Arab. J. Sci Eng., 42, 4559 (2017). https://doi.org/10.1007/s13369-017-2553-8
  10. L. Liu, A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra. J. Mater. Sci., 39, 215 (2004). https://doi.org/10.1023/B:JMSC.0000007747.43275.34
  11. L.F. Mondolfo. Aluminium Alloys: Structure and Properties (London, Butterworths Ltd., 1976)
  12. V.S. Zolotorevskiy, N.A. Belov. Metallovedeniye liteynykh alyuminiyevykh splavov (MISIS, M., 2005) (in Russian)
  13. H. Okamoto. J. Phase Equil. Diff., 28, 229 (2007). https://doi.org/10.1007/s11669-007-9038-5
  14. N.P. Lyakishev. Diagrammy sostoyaniya dvoynykh metallicheskikh sistem. Spravochnik v 3 t. Pod obshchey red. N.P. Lyakishev. (Mashinostroyeniye, M., 2001), v. 3, p. 1 (in Russian)
  15. A.I. Belyayev, O.A. Romanova, O.S. Bochvar, K.S. Pokhodayev, N.N. Buynov, N.A. Loktionova, I.N. Frilyander. Alyuminiyevyye splavy. Metallovedeniye alyuminiya i yego splavov. Spravochnoye rukovodstvo. (Metallurgiya, M., 1971) (in Russian)
  16. N.A. Belov, S.V. Savchenko, A.V. Khvan. Fazovyy sostav i struktura siluminov (MISIS, M, 2007) (in Russian)
  17. M. V. Mal'tsev. Metallografiya promyshlennykh tsvetnykh metallov i splavov (Metallurgiya, M., 1970) (in Russian)
  18. Song-Mao Liang, R. Schmid-Fetzer. Acta Mater., 72, 41 (2014). https://doi.org/10.1016/j.actamat.2014.02.042
  19. S. Wang, M. Fu, X. Li, J. Wang, X. Su. J. Mater. Proc. Technol., 255, 105 (2018). https://doi.org/10.1016/j.jmatprotec.2017.12.008
  20. H. Liao, W. Huang, Q. Wang, F. Jia. J. Mater. Sci. Technol., 30 (2), 146 (2014). https://doi.org/10.1016/j.jmst.2013.05.003
  21. F. Cao, Y. Jia, K.G. Prashanth, P. Ma, J. Liu, S. Scudino, F. Huang, J. Eckert, J. Sun. Mater. Design, 74, 150 (2015). https://doi.org/10.1016/j.matdes.2015.03.008
  22. Y.C. Lin, Shun-Cun Luo, J. Huang, Liang-Xing Yin, Xing-You Jiang. Mater. Sci. Engin. A, 725, 530 (2018). https://doi.org/10.1016/j.msea.2018.04.049
  23. V. Vijeesh, K. Narayan Prabhu. Trans. Indian Inst. Met., 67 (1), 1 (2014). https://doi.org/10.1007/s12666-013-0327-x
  24. S.M. Miresmaeili, J. Campbell, S.G. Shabestari, S.M.A. Boutorabi. Metall. Mater. Trans. A, 36, 2341 (2005). https://doi.org/10.1007/s11661-005-0106-3
  25. K. Gammer, E. Ogris, P.J. Uggowitzer, H. Hutter. Microchim. Acta, 141, 23 (2003). https://doi.org/10.1007/s00604-002-0908-6
  26. S.D. Mc Donald, K. Nogita, A.K. Dahle. J. Alloys and Compounds 422, 184 (2006). https://doi.org/10.1016/j.jallcom.2005.11.070
  27. K.F. Kobayashi, L.M. Hogan. J. Mater. Sci., 20 (6), 1961 (1985). https://doi.org/10.1007/BF01112278
  28. E.A. Boom. Priroda modifitsirovaniya splavov tipa silumin. (Metallurgiya, M.,1972) (in Russian)
  29. S. Moniri, A.J. Shahani. J. Mater. Res., 34 (1), 20 (2019). https://doi.org/10.1557/jmr.2018.361
  30. Sang-Soo Shin, Eok-Soo Kim, Gil-Yong Yeom, Jae-Chul Lee. Mater. Sci. Engin. A, 532, 151 (2012). https://doi.org/10.1016/j.msea.2011.10.076
  31. M. De Giovanni, J.M. Warnett, M.A. Williams, P. Srirangam. J. Alloys and Compounds. 727 (12), 353 (2017). https://doi.org/10.1016/j.jallcom.2017.08.146
  32. H. Liao, Yu Sun, G. Sun. Mater. Sci. Engin. A, 335, 62 (2002). https://doi.org/10.1016/S0921-5093(01)01949-9
  33. P. Srirangam, S. Chattopadhyay, A. Bhattacharya, S. Nag, J. Kaduk, S. Shankar, R. Banerjee, T. Shibata. Acta Materialia, 65, 185 (2014). https://doi.org/10.1016/j.actamat.2013.10.060
  34. M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, J. Banhart. Acta Materialia, 60 (9), 3920 (2012). https://doi.org/10.1016/j.actamat.2012.03.031
  35. A.K. Dahle, K. Nogita, J.W. Zindel, S.D. Mc Donald, L.M. Hogan. Metallurg. Mater. Transact. A, 32 (4), 949 (2000). https://doi.org/10.1007/s11661-001-0352-y
  36. I. Ozturk, G.H. Agaoglu, E. Erzi, D. Di spi nar, G. Orhan. J. Alloys and Compounds, 763, 384 (2018). https://doi.org/10.1016/j.jallcom.2018.05.341
  37. G. Liu, G. Li, A. Cai, Z. Chen. Materials and Design, 32 (1), 121 (2011). https://doi.org/10.1016/j.matdes.2010.06.027
  38. V.N. Osipov, Yu.A. Fadin, S.P. Nikanorov. Technical Physics, 65 (12), 1981 (2020). https://doi.org/10.1134/S1063784220120191
  39. El-Benawy Talaat, F. Hasse. Mat. Trans., JIM, 41 (4), 507 (2000). https://doi.org/10.2320/matertrans1989.41.507
  40. M.H. Mulazimoglu, R.A.L. Drew, J.E. Gruzleski. Metallurgical Transactions: A, 20A (3), 383 (1989). https://doi.org/10.1007/BF02653917
  41. A.I. Averkin, B.N. Korchunov, S.P. Nikanorov, V.N. Osipov. Tech. Phys. Lett., 42 (2), 201 (2016). https://doi.org/10.1134/S106378501602019X
  42. R. Haghayeghi, G. Timelli. Mater. Lett., 283 (3-4), 128779 (2021). https://doi.org/10.1016/j.matlet.2020.128779
  43. H. Yan, C. Zhu, Z. Wu, W. Gao. Mat. Trans., JIM, 61 (1), 181 (2020). https://doi.org/10.2320/matertrans.MT-M2019225
  44. L. Ceschini, A. Morri, A. Morri, A. Gamberini, S. Messieri. Mater. Design, 30 (10) 4525 (2009). https://doi.org/10.1016/j.matdes.2009.05.012
  45. R.Yu. Barkov, A.S. Prosviryakov, M.G. Khomutov, A.V. Pozdniakov. Phys. Metals Metallography, 122 (6), 614 (2021). https://doi.org/10.1134/S0031918X210 60028
  46. M. Zamania, L. Morini, L. Ceschini, S. Seifeddine. Mater. Sci. Engin. A, 693, 42 (2017). https://doi.org/10.1016/j.msea.2017.03.084
  47. Z. Chen, H. Kang, G. Fan, J. Li, Y. Lu, J. Jie, Y. Zhang, T. Li, X. Jian, T. Wang. Acta Materialia, 120 (11), 168 (2016). https://doi.org/10.1016/j.actamat.2016.08.045
  48. R.Yu. Barkov, A.G. Mochugovskiy, M.G. Khomutov, A.V. Pozdniakov. Phys. Metals Metallography, 122 (2), 161 (2021). https://doi.org/10.1134/S0031918X21020022
  49. Wu Yuying, Liu Xiangfa, Jang Binggang, Huang Chuanzhen. Rare Metals, 29 (1), 62 (2010). https://doi.org/10.1007/s12598-010-0011-9
  50. H. Zhang, H. Duan, G. Shao, L. Xu. Rare Metals, 27 (1), 59 (2008). https://doi.org/10.1016/S1001-0521(08)60031-5
  51. Min Zuo, Xiangfa Liu, Qianqian Sun. J. Mater. Sci., 44, 1952 (2009). https://doi.org/10.1007/s10853-009-3287-0
  52. Min Zuo, Kun Jiang, Xiangfa Liu. J. Alloys Compounds, 503 (2), L26 (2010). https://doi.org/10.1016/j.jallcom.2010.05.017
  53. V.K. Afanas'yev, S.A. Gladyshev, B.S. Yefimenko, S.M. Nikitenko, M.V. Popova, A.N. Prudnikov, A.A. Ruzhilo, M.N. Churik, A.V. Gorshenin. Porshnevyye siluminy. (Poligraf, Kemerovo, 2005) (in Russian)
  54. M.V. Glavatskikh, A.V. Pozdniakov, S.V. Makhov, V.I. Napalkov. Russ. J. Non-Ferrous Metals, 55 (5) 450 (2014) https://doi.org/10.3103/S1067821214050095
  55. A.V. Pozdniakov, M.V. Glavatskikh, S.V. Makhov, V.I. Napalkov. Mater. Lett., 128, 325 (2014). http://dx.doi.org/10.1016/j.matlet.2014.04.068
  56. Min Zuo, D. Zhao, X. Teng, H. Geng, Z. Zhang. Mater. Design, 47 (5), 857 (2013). https://doi.org/10.1016/j.matdes.2012.12.054
  57. M. Faraji, I. Todd, H. Jones. Metall. Mater. Transactions A, 40 (7), 1710 (2009). https://doi.org/10.1007/s11661-009-9842-0
  58. Yu-Chih Tzeng, Chih-Ting Wu, Hui-Yun Bor, Jain-Long Horng, Mu-Lin Tsai, Sheng-Long Lee. Mater. Sci. Engin. A, 593, 103 (2014). https://doi.org/10.1016/j.msea.2013.11.039
  59. M. Kim, Y. Hong, H. Cho. Met. Mater. Intern., 10 (6), 513 (2004). https://doi.org/10.1007/BF03027412
  60. M. Kim. Met. Mater. Intern., 13 (2), 103 (2007). https://doi.org/10.1007/BF03027559
  61. A. Muhammad, C. Xu, W. Xuejiao, S. Hanada, H. Yamagata, Li R. Hao, Ma Chaoli. Mater. Sci. Engin. A, 604, 122 (2014). https://doi.org/10.1016/j.msea.2014.03.005
  62. J.H. Li, X.D. Wang, T.H. Ludwig, Y. Tsunekawa, L. Arnberg, J.Z. Jiang, P. Schumacher. Acta Mater., 85, 153 (2015). https://doi.org/10.1016/j.actamat.2014.10.064
  63. F. Mao, G. Yan, Z. Xuan, Z. Cao, T. Wang. J. Alloys Compounds, 650, 896 (2015). https://doi.org/10.1016/j.jallcom.2015.06.266
  64. Q. Li, T. Xia, Y. Lan, P. Li, L. Fan. Mater. Sci. Eng. A, 588, 97 (2013). https://doi.org/10.1016/j.msea.2013.09.017
  65. Z.M. Shi, Q. Wang, G. Zhao, R.Y. Zhang. Mater. Sci. Eng. A, 626, 102 (2015). https://doi.org/10.1016/j.msea.2014.12.062
  66. Xing Pengfei, Gao Bo, Zhuang Yanxin, Liu Kaihua, Tu Ganfeng. J. Rare Earths, 28 (6), 927 (2010). https://doi.org/10.1016/S1002-0721(09)60222-2
  67. Q. Zheng, L. Zhang, H. Jiang, J. Zhao, J. He. J. Mater. Sci. Technol., 47, 142 (2020). https://doi.org/10.1016/j.jmst.2019.12.021
  68. V. Vijeesh, K. Narayan Prabhu. Light Metals 2015, ed. by M. Hyland (Springer, Cham, Switzerland, 2016), p. 403. https://doi.org/10.1007/978-3-319-48248-4_67
  69. W. Jiang, Z. Fan, Y. Dai, C. Li. Mater. Sci. Engin. A, 597, 237 (2014). https://doi.org/10.1016/j.msea.2014.01.009
  70. E. Aguirre-Dela Torre, R. Perez-Bustamante, J. Camarillo-Cisneros, C.D. Gomez-Esparza, H.M. Medrano-Prieto, R. Marti nez-Sanchez. J. Rare Earths., 31 (8), 811 (2013). https://doi.org/10.1016/S1002-0721(12)60363-9
  71. Yu-Chou Tsai, Cheng-Yu Chou, Sheng-Long Lee, Chih-Kuang Lin, Jing-Chie Lin, S.W. Lim. J. Alloys Compounds, 487, 157 (2009). https://doi.org/10.1016/j.jallcom.2009.07.183
  72. S. Kores, M. Vonchina, B. Kosec, P. Mrvar, J. Medved. Mater. Technol., 44 (3), 137 (2010)
  73. Q. Li, T. Xia,Y. Lan, W. Zhao, L. Fan, P. Li. J. Alloys Compounds, 562, 25 (2013). https://doi.org/10.1016/j.jallcom.2013.02.016
  74. E.M. Elgallad, M.F. Ibrahim, H.W. Doty, F.H. Samuel. Philos. Magaz., 98, 1337 (2018). https://doi.org/10.1080/14786435.2018.1435917
  75. J.H. Li, S. Suetsugu, Y. Tsunekawa, P. Schumacher. Metallurg. Mater. Trans., A, 44 (2), 669 (2013). https://doi.org/10.1007/s11661-012-1410-3
  76. Q. Li, J. Li, B. Li, Y. Zhu, D. Liu, Y. Lan, S. Wang. J. Mater. Engin. Perform., 27 (7), 3498 (2018). https://doi.org/10.1007/s11665-018-3456-x
  77. B. Li, H. Wang, J. Jie, Z. Wei. J. Alloys Compounds, 509, 3387 (2011). https://doi.org/10.1016/j.jallcom.2010.12.081
  78. Z. Hu, Z. Dong, Z. Yin, H. Yan, J. Tian, H. Xie. J. Rare Earths, 36, 662 (2018). https://doi.org/10.1016/j.jre.2017.12.007
  79. G. Mao, S. Liu, Z. Wu, C. Zhu, W. Gao. Mater. Lett., 271, 127795 (2020). https://doi.org/10.1016/j.matlet.2020.127795
  80. G. Mao, H. Yan, C. Zhu, Z. Wu, W. Gao. J. Alloys Compounds, 806, 909 (2019). https://doi.org/10.1016/j.jallcom.2019.07.107
  81. Q. Li, B. Li, J. Li, Y. Zhu, T. Xia. Mater. Sci. Engin. A, 722, 47 (2018). https://doi.org/10.1016/j.msea.2018.03.015
  82. K. Nogita, S. D. McDonald, A. K. Dahle. Mater. Transact., 45 (2), 323 (2004). https://doi.org/10.2320/matertrans.45.323
  83. Shi Zhiming, Wang Qiang, Shi Yuting, Zhao Ge, Zhang Ruiying. J. Rare Earth, 33, 1004 (2015). https://doi.org/10.1016/S1002-0721(14)60518-4
  84. Qiu Hongxu, Yan Hong, Hu Zhi. J. Alloys Compounds, 567, 77 (2013). https://doi.org/10.1016/j.jallcom.2013.03.050
  85. Q. Li, J. Li, B. Li, Y. Lan, T. Xia. Intern. J. Metalcast., 12, 554 (2017). https://doi.org/10.1007/s40962-017-0193-0

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru