Electronic structure and optical absorption of C90 fullerene isomers
Murzashev A.I. 1, Kokurin M. Yu. 1, Zhumanazarov A.P.1, Paymerov S. K. 1
1Mari State University, Yoshkar-Ola, Russia
Email: nanotubes59@mail.ru, kokurinm@yandex.ru, allayar_0909@mail.ru, paymerov@mail.ru

PDF
The energy spectra and optical absorption spectra of isomers Nos. 1, 6, 16 and 46 of fullerene C90 are calculated. Due to the comparison of theoretical and experimental optical absorption spectra, three previously synthesized isomers of C90 fullerene have been identified. The calculations are carried out within the framework of the developed approach, taking into account the intra-node Coulomb interaction of ?-electrons, which plays a crucial role in the formation of the electronic and optical properties of fullerenes. Keywords: fullerene, intra-node Coulomb interaction, Hubbard model, Coulomb integral, energy spectrum, selection rules, optical absorption spectrum.
  1. T.O. Wehling, E. Sa ci oglu, C. Friedrich et al. Phys. Rev. Lett., 106 (23), 236805 (2011). http://dx.doi.org/10.1103/PhysRevLett.106.236805
  2. R.O. Zaitsev. JETP Lett., 94 (3), 206 (2011). https://doi.org/10.1134/S0021364011150173
  3. J. Hubbard. Proc. Roy. Soc., 276 (1365), 238 (1963). https://doi.org/10.1098/rspa.1963.0204
  4. M.P. Lopez Sancho, M.C. Munoz, L. Chico. Phys. Rev. B., 63 (16), 165419 (2001). DOI: 10.1103/physrevb.63.165419
  5. T. Sagawa. J. Phys. Soc. Jpn., 21 (1), 49 (1966). https://doi.org/10.1143/JPSJ.21.49
  6. P.R. Wallace. Phys. Rev., 71 (9), 622 (1947). https://doi.org/10.1103/PhysRev.71.622
  7. J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker. Nature (London, UK), 391 (6662), 59 (1998). https://doi.org/10.1038/34139
  8. H. Kuzmany, B. Burger, M. Hulman, J. Kurti, A.G. Rinzler, R.E. Smalley. Europhys. Lett., 44 (4), 518 (1998). https://doi.org/10.1209/epl/i1998-00504-y
  9. Ph. Kim, T.W. Odom, J.-L. Huang, Ch.M. Lieber. Phys. Rev. Lett. 82 (6), 1225 (1999)., https://doi.org/10.1103/PhysRevLett.82.1225
  10. M.S. Dresselhaus, G. Dresselhaus, R. Saito. Phys. Rev. B, 45 (11), 6234 (1992). DOI: 10.1103/PhysRevB.45.6234
  11. M. Miao. Carbon., 49 (12), 3755 (2011). https://doi.org/10.1016/j.carbon.2011.05.008
  12. D.D. Michael, J.M. Alford. Nature (London, UK), 393 (6686), 668 (1998). DOI: 10.1038/31435
  13. M. Zalibera, A.A. Popov, M. Kalbac, P. Rapta, L. Dunsch. Chem. --- Eur. J., 14 (32), 9960 (2008). https://doi.org/10.1002/chem.200800591
  14. P.W. Fowler, D.E. Manolopoulos. An Atlas of Fullerenes (Oxford Univ. Press, Oxford, 1995)
  15. E.H. Lieb, F.Y. Wu. Phys. Rev. Lett., 20 (25), 1445 (1968). https://doi.org/10.1103/PhysRevLett.20.1445
  16. R.O. Za tsev. Diagram Methods in the Theory of Superconductivity and Ferromagnetism (Editorial URSS, Moscow, 2004)
  17. Yu.A. Izyumov. UFN, 169 (3), 225 (1999) (in Russian)
  18. R.R. Nigmatulin, V.A. Toboev. Theor. Math. Phys., 80 (1), 736 (1989). https://doi.org/10.1007/BF01015312
  19. G.I. Mironov. Fizika metallov i metallovedenie, 102 (6), 611 (2006) (in Russian). https://doi.org/10.1134/S0031918X06120039
  20. A.I. Murzashev. ZhETF, 135 (1), 122 (2009) (in Russian). DOI: 10.1134/S1063776109010142
  21. A.I. Murzashev, Ye.O. Shadrin. ZhETF, 145 (6), 1161 (2014) (in Russian). DOI: 10.1134/S1063776114050148
  22. N.V. Melnikova, A.I. Murzashev, T.E. Nazarova, E.O. Shadrin. Synthetic Metals., 220, 292 (2016). DOI: 10.1016/j.synthmet.2016.06.024
  23. G.I. Mironov, A.I. Murzashev. Fizika tverdogo tela, 53 (11), 2273 (2011) (in Russian). DOI: 10.1134/S1063783411110199
  24. A.I. Murzashev. Izvestiya vysshikh uchebnykh zavedeniy. Fizika, 55 (5), 49 (2012) (in Russian). DOI: 10.1007/s11182-012-9843-0
  25. B.V. Lobanov, A.I. Murzashev. FTT, 55 (4), 797 (2013) (in Russian). DOI: 10.1134/S1063783413040173
  26. A.I. Murzashev, T.E. Nazarova. Fizika metallov i metallovedenie, 115 (7), 675 (2014) (in Russian). DOI: 10.1134/S0031918X14040103
  27. A.I. Murzashev, T.E. Nazarova. ZhETF, 146 (5), 1026 (2014) (in Russian). DOI: 10.1134/S106377611411017X
  28. I.Ye. Kareev, V.P. Bubnov, A.I. Murzashev, B.V. Lobanov et al. FTT, 57 (11), 2254 (2015) (in Russian). DOI: 10.1134/S1063783415110189
  29. A.I. Murzashev, M.Yu. Kokurin, S.K. Paimerov. Opt. i spektr., 128 (9), 1238 (2020) (in Russian). DOI: 10.1134/S0030400X20090143
  30. G.I. Mironov. FTT, 49 (3), 527 (2007) (in Russian). DOI: 10.1134/S1063783407030316
  31. K. Kikuchi, N. Nakahara, T. Wakabayashi et al. Chem. Phys. Lett., 188 (3-4), 177 (1992). DOI: 10.1016/0009-2614(92)90005-8
  32. J. Elliott, P. Dawber, Symmetry in Physics V. 1 (Mir, Moscow, 1983)
  33. Hua Yang, Christine M. Beavers, Zhimin Wang et al. Angew. Chem. Int. Ed., 49 (5), 886 (2010). DOI: 10.1002/anie.200906023

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru