The energy spectra of C50 fullerene and molecule C50Cl10 of symmetry group D5h were obtained within the Hubbard model in the mean-field approximation. Using group theory methods, the classification of energy states was carried out, and the allowed transitions in the energy spectra of C50 and C50Cl10 molecules of symmetry group D5h were determined. On the basis of this spectrum, an interpretation of experimentally observed optical absorption bands of molecule C50Cl10 is proposed. Keywords: Hubbard model, Green's functions, energy spectrum, nanosystems, C50 fullerene.
- H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. Nature, 318, 162 (1985). DOI: 10.1038/318162a0
- T. Guo, M.D. Diener, Y. Chai, M.J. Alford, R.E. Haufler, S. M. McClure, T. Ohno, J.H. Weaver, G.E. Scuseria, R.E. Smalley. Science, 257, 1661 (1992). DOI: 10.1126/science.257.5077.1661
- S. Gao, S.Y. Xie, R.B. Huang, L.S. Zheng. Chem. Commun., 156, 2676 (2003). DOI: 10.1039/B306921B
- S.Y. Xie, F. Guo, R.B. Huang, C.R. Wang, X. Zhang, M.L. Liu, S.L. Deng, S.L. Zheng. Science, 304, 699 (2004). DOI: 10.1126/science.1095567
- Y. Yang, F.H. Wang, Y.S. Zhou, L.F. Yuan, J. Yang. Phys. Rev., 71, 013202 (2005). DOI: 10.1103/PhysRevA.71.013202
- N.N. Breslavskaya, A.A. Levin,A.L. Buchachenko. Russian Chemical Bulletin, 53 (1), 18 (2004). DOI: 10.1023/B:RUCB.0000024824.35542.0e
- P.W. Fowler, D.E. Manolopoulous. An atlas of fullerenes (Clarendon, Oxford, 1995)
- A. Bihlmeier. J. Chem. Phys., 135, 044310 (2011). DOI: 10.1063/1.3615502
- R.-H. Xie, G.W. Bryant, C.F. Cheung, H. Smith, J. Zhao. J. Chem. Phys., 121, 2849 (2004). DOI: 10.1063/1.1782451
- A. Miralrio, A. Munoz-Castro, R.B. King, L.E. Sansores. J. Phys. Chem., 123, 1429 (2019). DOI: 10.1021/acs.jpcc.8b08789
- J. Hubbard. Proc. Roy. Soc. London A, 276, 238 (1963). DOI: 10.1098/rspa.1963.0204
- A.V. Silant'ev. Opt. Spectrosc., 130 (2), 73 (2022). DOI: 10.1134/S0030400X22010131
- A.V. Silant'ev. Opt. Spectrosc., 124 (2), 155 (2018). DOI: 10.1134/S0030400X18020157
- A.V. Silant'ev. Phys. Met. Metallogr., 118 (1), 1 (2017). DOI: 10.1134/S0031918X16100112
- A.V. Silant'ev. Opt. Spectrosc., 127 (2), 190 (2019). DOI: 10.1134/S0030400X19080265
- A.V. Silant'ev. Phys. Met. Metallogr., 121 (6), 501 (2020). DOI: 10.1134/S0031918X20060149
- A.V. Silant'ev. Phys. Met. Metallogr., 122 (4), 315 (2021). DOI: 10.1134/S0031918X21040098
- A.V. Silant'ev. Phys. Met. Metallogr., 121 (3), 205 (2020). DOI: 10.1134/S0031918X20010160
- A.V. Silant'ev. Phys. Met. Metallogr., 119 (6), 511 (2018). DOI: 10.1134/S0031918X18060133
- G.S. Ivanchenko, N.G. Lebedev. Phys. Solid State, 49 (1), 189 (2007). DOI: 10.1134/S1063783407010301
- Z. Xu, J. Han, Z. Zhu, W. Zhang. J. Phys. Chem. A., 111, 656 (2007). DOI: 10.1021/jp064500b
- S.V. Tyablikov. Metody kvantovoi teorii magnetizma, 2nd edition, (Nauka, Moskva, 1975) (in Russian)
- R. Hochstrasser. Molekulyarnye aspekty simmetrii (Mir, Moskva, 1968) (in Russian)
- A.V. Silant'ev. J. Exp. Theor. Phys., 121 (4), 653 (2015). DOI: 10.1134/S1063776115110084.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.