Energy Spectrum and Optical Properties of Fullerene C50(D5h) within the Hubbard Model
Silant'ev A. V. 1
1Mari State University, Yoshkar-Ola, Russia
Email: kvvant@rambler.ru

PDF
The energy spectra of C50 fullerene and molecule C50Cl10 of symmetry group D5h were obtained within the Hubbard model in the mean-field approximation. Using group theory methods, the classification of energy states was carried out, and the allowed transitions in the energy spectra of C50 and C50Cl10 molecules of symmetry group D5h were determined. On the basis of this spectrum, an interpretation of experimentally observed optical absorption bands of molecule C50Cl10 is proposed. Keywords: Hubbard model, Green's functions, energy spectrum, nanosystems, C50 fullerene.
  1. H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. Nature, 318, 162 (1985). DOI: 10.1038/318162a0
  2. T. Guo, M.D. Diener, Y. Chai, M.J. Alford, R.E. Haufler, S. M. McClure, T. Ohno, J.H. Weaver, G.E. Scuseria, R.E. Smalley. Science, 257, 1661 (1992). DOI: 10.1126/science.257.5077.1661
  3. S. Gao, S.Y. Xie, R.B. Huang, L.S. Zheng. Chem. Commun., 156, 2676 (2003). DOI: 10.1039/B306921B
  4. S.Y. Xie, F. Guo, R.B. Huang, C.R. Wang, X. Zhang, M.L. Liu, S.L. Deng, S.L. Zheng. Science, 304, 699 (2004). DOI: 10.1126/science.1095567
  5. Y. Yang, F.H. Wang, Y.S. Zhou, L.F. Yuan, J. Yang. Phys. Rev., 71, 013202 (2005). DOI: 10.1103/PhysRevA.71.013202
  6. N.N. Breslavskaya, A.A. Levin,A.L. Buchachenko. Russian Chemical Bulletin, 53 (1), 18 (2004). DOI: 10.1023/B:RUCB.0000024824.35542.0e
  7. P.W. Fowler, D.E. Manolopoulous. An atlas of fullerenes (Clarendon, Oxford, 1995)
  8. A. Bihlmeier. J. Chem. Phys., 135, 044310 (2011). DOI: 10.1063/1.3615502
  9. R.-H. Xie, G.W. Bryant, C.F. Cheung, H. Smith, J. Zhao. J. Chem. Phys., 121, 2849 (2004). DOI: 10.1063/1.1782451
  10. A. Miralrio, A. Munoz-Castro, R.B. King, L.E. Sansores. J. Phys. Chem., 123, 1429 (2019). DOI: 10.1021/acs.jpcc.8b08789
  11. J. Hubbard. Proc. Roy. Soc. London A, 276, 238 (1963). DOI: 10.1098/rspa.1963.0204
  12. A.V. Silant'ev. Opt. Spectrosc., 130 (2), 73 (2022). DOI: 10.1134/S0030400X22010131
  13. A.V. Silant'ev. Opt. Spectrosc., 124 (2), 155 (2018). DOI: 10.1134/S0030400X18020157
  14. A.V. Silant'ev. Phys. Met. Metallogr., 118 (1), 1 (2017). DOI: 10.1134/S0031918X16100112
  15. A.V. Silant'ev. Opt. Spectrosc., 127 (2), 190 (2019). DOI: 10.1134/S0030400X19080265
  16. A.V. Silant'ev. Phys. Met. Metallogr., 121 (6), 501 (2020). DOI: 10.1134/S0031918X20060149
  17. A.V. Silant'ev. Phys. Met. Metallogr., 122 (4), 315 (2021). DOI: 10.1134/S0031918X21040098
  18. A.V. Silant'ev. Phys. Met. Metallogr., 121 (3), 205 (2020). DOI: 10.1134/S0031918X20010160
  19. A.V. Silant'ev. Phys. Met. Metallogr., 119 (6), 511 (2018). DOI: 10.1134/S0031918X18060133
  20. G.S. Ivanchenko, N.G. Lebedev. Phys. Solid State, 49 (1), 189 (2007). DOI: 10.1134/S1063783407010301
  21. Z. Xu, J. Han, Z. Zhu, W. Zhang. J. Phys. Chem. A., 111, 656 (2007). DOI: 10.1021/jp064500b
  22. S.V. Tyablikov. Metody kvantovoi teorii magnetizma, 2nd edition, (Nauka, Moskva, 1975) (in Russian)
  23. R. Hochstrasser. Molekulyarnye aspekty simmetrii (Mir, Moskva, 1968) (in Russian)
  24. A.V. Silant'ev. J. Exp. Theor. Phys., 121 (4), 653 (2015). DOI: 10.1134/S1063776115110084.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru