Change of optical properties of inorganic perovskite nanocrystals of CsPbClxBr3-x, alloyed with Yb3+ ions, when carrying out an anion exchange reaction
Tatarinov D. A. 1, Sokolova A. V. 1, Danilov D. V. 2, Litvin A. P. 1
1Center "Informational Optical Technologies", laboratory "Optics of quantum nanostructures", ITMO University, Saint-Petersburg, Russia
2Interdisciplinary Resource Center "Nanotechnology", St. Petersburg State University, Saint Petersburg, Russia
Email: litvin@itmo.ru
Alloying of perovskites nanocrystals by lanthanoids makes it possible to produce materials that luminesce effectively in both visible and near infrared spectra. In the present work, the influence of the width of the forbidden zone on the optical properties of the inorganic perovskites nanocrystals CsPbClxBr3-x alloyed by ions Yb3+ is investigated. For changing the chemical composition of nanocrystals, an anionic exchange method is used by adding bromide dodecyltrimethylammonium. As a result of the gradual substitution of chlorine ions with bromine ions, the forbidden area of nanocrystals is narrowed, resulting in a change in the spectral position of the optical transitions, the quantum output of photoluminescence in the near and infrared spectral ranges and the attenuation of photoluminescence. When the width of the forbidden area reaches 2.54 eV, the total quantum output of photoluminescence reaches 72%. Keywords: pervoskite nanocrystals, alloying, ytterbium, photoluminescence, anionic exchange.
- Z. Cao, F. Hu, C. Zhang, S. Zhu, M. Xiao, X. Wang. Adv. Photonics, 2 (5), 8-10 (2020). DOI: 10.1117/1.AP.2.5.054001
- X. Mei, D. Jia, J. Chen, S. Zheng, X. Zhang. Nano Today, 43 101449 (2022). DOI: 10.1016/j.nantod.2022.101449
- W. Shen, J. Chen, J. Wu, X. Li, H. Zeng. ACS Photonics, 8 (1), 113-124 (2021). DOI: 10.1021/acsphotonics.0c01501
- M. Liu, G. K. Grandhi, S. Matta, K. Mokurala, A. Litvin, S. Russo, P. Vivo. Adv. Photonics Res., 2 (3), 2000118 (2021). DOI: 10.1002/adpr.202000118
- Y. Chen, Y. Liu, M. Hong. Nanoscale, 12 (23), 12228-12248 (2020). DOI: 10.1039/d0nr02922j
- S. Zou, Y. Liu, J. Li, C. Liu, R. Feng, F. Jiang, Y. Li, J. Song, H. Zeng, M. Hong et al. J. Am. Chem. Soc., 139 (33), 11443-11450 (2017). DOI: 10.1021/jacs.7b04000
- C. Bi, S. Wang, Q. Li, S.V. Kershaw, J. Tian, A.L. Rogach. J. Phys. Chem. Lett., 10 (5), 943-952 (2019). DOI: 10.1021/ACS.JPCLETT.9B00290/SUPPL_FILE/ JZ9B00290_SI_001.PDF
- J.S. Yao, J. Ge, B.N. Han, K.H. Wang, H. Bin Yao, H.L. Yu, J.H. Li, B.S. Zhu, J.Z. Song, C. Chen et al. J. Am. Chem. Soc., 140 (10), 3626-3634 (2018). DOI: 10.1021/jacs.7b11955
- Z.J. Yong, S.Q. Guo, J.P. Ma, J.Y. Zhang, Z.Y. Li, Y.M. Chen, B. Bin Zhang, Y. Zhou, J. Shu, J.L. Gu et al. J. Am. Chem. Soc., 140 (31), 9942-9951 (2018). DOI: 10.1021/jacs.8b04763
- M. Lu, X. Zhang, Y. Zhang, J. Guo, X. Shen, W.W. Yu, A.L. Rogach. Advanced Materials, 1804691, 1-6 (2018). DOI: 10.1002/adma.201804691
- R. Ketavath, N.K. Katturi, S.G. Ghugal, H.K. Kolli, T. Swetha, V.R. Soma, B. Murali. J. Phys. Chem. Lett., 10 (18), 5577-5584 (2019). DOI: 10.1021/acs.jpclett.9b02244
- I.D. Skurlov, W. Yin, A.O. Ismagilov, A.N. Tcypkin, H. Hua, H. Wang, X. Zhang, A.P. Litvin, W. Zheng. Nanomaterials, 12 (1), 1-16 (2022). DOI: 10.3390/nano12010151
- W.J. Mir, T. Sheikh, H. Arfin, Z. Xia, A. Nag. NPG Asia Mater., 12 (1), 1-9 (2020). DOI: 10.1038/s41427-019-0192-0
- S. Kachhap, S. Singh, A.K. Singh, S.K. Singh. J. Mater. Chem. C, 10 (10), 3647-3676 (2022). DOI: 10.1039/D1TC05506B
- B. Su, G. Zhou, J. Huang, E. Song, A. Nag, Z. Xia. Laser Photon. Rev., 15 (1), 2000334 (2021). DOI: 10.1002/LPOR.202000334
- W. Liu, Q. Lin, H. Li, K. Wu, I. Robel, J. M. Pietryga, V.I. Klimov. J. Am. Chem. Soc., 138 (45), 14954-14961 (2016). DOI: 10.1021/jacs.6b08085
- T.J. Milstein, K.T. Kluherz, D.M. Kroupa, C.S. Erickson, J.J. De Yoreo, D.R. Gamelin. Nano Lett., 19 (3), 1931-1937 (2019). DOI: 10.1021/acs.nanolett.8b05104
- X.X. Zhang, Y. Zhang, X.X. Zhang, W. Yin, Y. Wang, H. Wang, M. Lu, Z. Li, Z. Gu, W.W. Yu. J. Mater. Chem. C, 6 (37), 10101-10105 (2018). DOI: 10.1039/c8tc03957g
- D. Zhou, D. Liu, G. Pan, X. Chen, D. Li, W. Xu, X. Bai, H. Song. Adv. Mater., 29 (42), 1704149 (2017). DOI: 10.1002/adma.201704149
- G. Nedelcu, L. Protesescu, S. Yakunin, M.I. Bodnarchuk, M.J. Grotevent, M.V. Kovalenko. Nano Lett., 15 (8), 5635-5640 (2015). DOI: 10.1021/acs.nanolett.5b02404
- Q.A. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna. J. Am. Chem. Soc., 137 (32), 10276-10281 (2015). DOI: 10.1021/jacs.5b05602
- T. J. Milstein, D. M. Kroupa, D. R. Gamelin. Nano Lett., 18 (6), 3792-3799 (2018). DOI: 10.1021/acs.nanolett.8b01066
- S. Yang, C. Bi, J. Tian. J. Phys. Chem. C, 125 (34), 18810-18816 (2021). DOI: 10.1021/acs.jpcc.1c04896
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko. Nano Lett., 15 (6), 3692-3696 (2015). DOI: 10.1021/nl5048779
- P.S. Parfenov, A.P. Litvin, E.V. Ushakova, A.V. Fedorov, A. V. Baranov, K. Berwick. Rev. Sci. Instrum., 84 (11), 116104 (2013). DOI: 10.1063/1.4829717
- I.D. Skurlov, D.A. Onishchuk, P.S. Parfenov, A.P. Litvin. Opt. Spectrosc., 125 (5), 756-759 (2018). DOI: 10.1134/S0030400X18110279
- A. Dey, J. Ye, A. De, E. Debroye, S.K. Ha, E. Bladt, A.S. Kshirsagar, Z. Wang, J. Yin, Y. Wang et al. ACS Nano, (2021). DOI: 10.1021/acsnano.0c08903
- H. Huang, R. Li, S. Jin, Z. Li, P. Huang, J. Hong, S. Du, W. Zheng, X. Chen, D. Chen. ACS Appl. Mater. Interfaces, 13 (29), 34561-34571 (2021). DOI: 10.1021/acsami.1c09421
- M. Stefanski, M. Ptak, A. Sieradzki, W. Strek. Chem. Eng. J., 408 (September 2020), (2021). DOI: 10.1016/j.cej.2020.127347
- J.Y. D. Roh, M.D. Smith, M.J. Crane, D. Biner, T.J. Milstein, K.W. Kramer, D.R. Gamelin. Phys. Rev. Mater., 4 (10), 1-11 (2020). DOI: 10.1103/PhysRevMaterials.4.105405
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.