Determination of the relaxation characteristics for solvents from non-stationary spectra: the role of the gating pulse duration
Yermolenko I. P. 1, Mikhailova V. A. 1, Ivanov A. I. 1
1Volgograd State University, Volgograd, Russia
Email: mikhailova.va@volsu.ru, Anatoly.Ivanov@volsu.ru

PDF
The previously developed approach to the analysis of experimental spectra of non-stationary fluorescence has been improved by taking into account the effect of the duration of the gating pulse and a more accurate description of the initial stage of solvent relaxation. The exponential function used to describe the inertial component of relaxation has been replaced by the Gaussian function. This approach explicitly takes into account the reorganization and relaxation of the solvent and intramolecular vibrations. It includes an explicit description of the wave packet formation in the excited state of the fluorophore. The improvement of the approach made it possible to refine the relaxation characteristics of a number of solvents: ethylene glycol, dimethyl sulfoxide, butyronitrile, ethyl acetate, diethyl ether, dipropyl ether. Keywords: nonequilibrium of the nuclear subsystem, Stokes shift, relaxation of intramolecular vibrations, inertial component of solvent relaxation
  1. N.G. Bakhshiev. Opt. Spectrosc., 16, 821 (1964). (in Russian)
  2. Yu.T. Mazurenko, N.G. Bakhshiev. Opt. i spektr., 28 (5), 905 (1970) (in Russian)
  3. K. Tominaga, G.C. Walker, W. Jarzeba, P.F. Barbara. J. Phys. Chem., 95 (25) 10475 (1991). DOI: 10.1021/j100178a039
  4. A.V. Barzykin, P.A. Frantsuzov, K. Seki, M. Tachiya. Adv. Chem. Phys., 123, 511 (2002). DOI: 10.1002/0471231509.ch9
  5. E. Vauthey. J. Photochem. Photobiol. A, 179, 1 (2006). DOI: 10.1016/j.jphotochem.2005.12.019
  6. M. Glasbeek, H. Zhang. Chem. Rev., 104 (4), 1929 (2004). DOI: 10.1021/cr0206723
  7. G. Angulo, J. Jeedrak, A. Ochab-Marcinek, P. Pasitsuparoad, C. Radzewicz, P. Wnuk, A. Rosspeintner. J. Chem. Phys., 146, 244505 (2017). DOI: 10.1063/1.4990044
  8. T. Kumpulainen, B. Lang, A. Rosspeintner, E. Vauthey. Chem. Rev., 117, 10826 (2017). DOI: 10.1021/acs.chemrev.6b00491
  9. S.V. Feskov, V.A. Mikhailova, A.I. Ivanov. J. Photochem. Photobiol. C., 29, 48 (2016). DOI: 10.1016/j.jphotochemrev.2016.11.001
  10. A.I. Ivanov, V.A. Mikhailova. Uspekhi khimii, 79 (12), 1139 (2010). [A.I. Ivanov, V.A. Mikhailova. Russ. Chem. Rev., 79 (12), 1047 (2010). DOI: 10.1070/RC2010v079n12ABEH004167]
  11. T. Asahi, N. Mataga. J. Phys. Chem., 95, 1956 (1991). DOI: 10.1021/j100158a014
  12. E. Akesson, G. Walker, P. Barbara. J. Chem. Phys., 95 (6), 4188 (1991). DOI: 10.1063/1.460774
  13. S.M. Swicka, W. Zhua, M. Mattaa, T.J. Aldricha, A. Harbuzaruc, J.T.L. Navarretec, R.P. Ortizc, K.L. Kohlstedta, G.C. Schatza, A. Facchettia, F.S. Melkonyana, T.J. Marks. Proc. Nat. Acad. Sc., 115 (36) E834 (2018). DOI: 10.1073/pnas.1807535115
  14. G.D. Tainter, M.T. Horantner, Luis M. Pazos-Outon, R.D. Lamboll, H. \=Abolinvs, T. Leijtens, S. Mahesh, R.H. Friend, H.J. Snaith, H.J. Joyce, F. Deschler. Joule. 3 (5),1301 (2019). DOI: 10.1016/j.joule.2019.03.010
  15. A.A. Ovchinnikov, M.Ya. Ovchinnikova. ZhETF, 56 (4), 1278 (1969). [A.A. Ovchinnikov, M.Ya. Ovchinnikova. Sov. Phys. JETP, 29 (4), 688 (1969).]
  16. H. Frohlich. Theory of dielectrics: Dielectric constant and dielectric loss, 2nd ed. (Clarendon Press, Oxford, 1958)
  17. Y. Tanimura, S. Mukamel. Quantum brownian oscillator analysis of pump-probe spectroscopy in the condensed phase, Ultrafast Dynamics of Chemical Systems, (Springer, Dordrecht, 1994)
  18. S. Mukamel. Principles of Nonlinear Optical Spectroscopy, (Oxford university press, New York, 1995)
  19. W. Domcke, G. Stock. Adv. Chem. Phys., 100, 1 (1997). DOI:10.1002/9780470141595.ch1
  20. D.-Y. Yang, S.-Y. Sheu. J. Chem. Phys., 106 (23), 9427 (1997). DOI:10.1063/1.473847
  21. C.P. Koch, T. Kluner, R. Kosloff. J. Chem. Phys., 116 (18), 7983 (2002). DOI: 10.1063/1.1450124
  22. S.A. Kovalenko, N. Eilers-Konig, T.A. Senyushkina, N.P. Ernsting. J. Phys. Chem. A, 105 (20), 4834 (2001). DOI: 10.1021/jp004007e
  23. D. Egorova, M.F. Gelin, W. Domcke. J. Chem. Phys., 122 (13), 134504 (2005). DOI: 10.1063/1.1862618
  24. R.G. Fedunov, I.P. Yermolenko, A.E. Nazarov, A.I. Ivanov, A. Rosspeintner, G. Angulo. J. Mol. Liq., 298, 112016 (2020). DOI: 10.1016/j.molliq.2019.112016
  25. A.E. Nazarov, A.I. Ivanov, A. Rosspeintner, G. Angulo. J. Mol. Liq., 360, 119387 (2022). DOI: 10.1016/j.molliq.2022.119387
  26. M.L. Horng, J.A. Gardecki, A. Papazyan, M. Maroncelli. J. Phys. Chem., 99, 17311 (1995). DOI: 10.1021/j100048a004
  27. M. Maroncelli, V.P. Kumar, A. Papazyan. J. Phys. Chem., 97, 13 (1993). DOI: 10.1021/j100103a004
  28. L.D. Zusman, A.B. Gelman. Opt. i spektr., 53 (3), 248 (1982) (in Russian)
  29. A.J. Leggett, S. Chakravarty, A.T. Dorsey, M. Gary. Rev. Mod. Phys., 59 (1), 1 (1987). DOI: 10.1103/RevModPhys.59.1
  30. A.O. Caldeira, A.J. Leggett. Ann. Phys. (N.Y.) 149 (2), 374 (1983). DOI: 10.1016/0003-4916(83)90202-6
  31. A. Garg, J.N. Onuchic, V. Ambegaoka. J. Chem. Phys., 83 (9), 4491 (1985). DOI: 10.1063/1.449017
  32. A.I. Ivanov, G.S. Lomakin, V.A. Mikhailova. Chem. Physics, 10 (5), 638 (1991). [A.I. Ivanov, G.S. Lomakin, V.A. Mikhailova. Soviet J. Chem. Phys., 10 (5), 972 (1992)]
  33. A.I. Ivanov, V.V. Potovoi. Chem. Phys., 247 (2), 245 (1999). DOI: 10.1016/S0301-0104(99)00197-4
  34. B.D. Fainberg, D. Huppert. Adv. Chem. Phys., 107, 191 (1999)
  35. L.D. Zusman. Chem. Phys., 49 (2), 295 (1980). DOI: 10.1016/0301-0104(80)85267-0
  36. D.F. Calef, P.G. Wolynes. J. Phys. Chem., 87 (18), 3387 (1983). DOI: 10.1021/j100241a008
  37. R. Kubo, Y. Toyozawa. Progress of Theoretical Physics, 13 (2), 160 (1955). DOI: 10.1143/PTP.13.160
  38. J.-L. Chang, J. Mol. Spectrosc., 232, 102 (2005). DOI: 10.1016/j.jms.2005.03.004
  39. I.P. Ermolenko, V.A. Mikhailova, A.I. Ivanov. Izvestiya UNTS RAN, 27 (1), (2021) (in Russian) DOI: 10.31040/2222-8349-2021-0-1-27-32
  40. B. Bagchi, R. Biswas. Adv. Chem. Phys., 109, 207 (1999)
  41. A.I. Ivanov, A.O. Kichigina. Khim. fizika, 31 (3), 3 (2012). [A.I. Ivanov, A.O. Kichigina. Russ. J. Phys. Chem. B, 6 (2), 175(2012). DOI: 10.1134/S1990793112020066]
  42. A.E. Nazarov, A.I. Ivanov. Computer Physics Communications, 270, 108178 (2022). DOI: 10.1016/j.cpc.2021.108178

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru