Determination of the relaxation characteristics for solvents from non-stationary spectra: the role of the gating pulse duration
Yermolenko I. P.
1, Mikhailova V. A.
1, Ivanov A. I.
11Volgograd State University, Volgograd, Russia
Email: mikhailova.va@volsu.ru, Anatoly.Ivanov@volsu.ru
The previously developed approach to the analysis of experimental spectra of non-stationary fluorescence has been improved by taking into account the effect of the duration of the gating pulse and a more accurate description of the initial stage of solvent relaxation. The exponential function used to describe the inertial component of relaxation has been replaced by the Gaussian function. This approach explicitly takes into account the reorganization and relaxation of the solvent and intramolecular vibrations. It includes an explicit description of the wave packet formation in the excited state of the fluorophore. The improvement of the approach made it possible to refine the relaxation characteristics of a number of solvents: ethylene glycol, dimethyl sulfoxide, butyronitrile, ethyl acetate, diethyl ether, dipropyl ether. Keywords: nonequilibrium of the nuclear subsystem, Stokes shift, relaxation of intramolecular vibrations, inertial component of solvent relaxation
- N.G. Bakhshiev. Opt. Spectrosc., 16, 821 (1964). (in Russian)
- Yu.T. Mazurenko, N.G. Bakhshiev. Opt. i spektr., 28 (5), 905 (1970) (in Russian)
- K. Tominaga, G.C. Walker, W. Jarzeba, P.F. Barbara. J. Phys. Chem., 95 (25) 10475 (1991). DOI: 10.1021/j100178a039
- A.V. Barzykin, P.A. Frantsuzov, K. Seki, M. Tachiya. Adv. Chem. Phys., 123, 511 (2002). DOI: 10.1002/0471231509.ch9
- E. Vauthey. J. Photochem. Photobiol. A, 179, 1 (2006). DOI: 10.1016/j.jphotochem.2005.12.019
- M. Glasbeek, H. Zhang. Chem. Rev., 104 (4), 1929 (2004). DOI: 10.1021/cr0206723
- G. Angulo, J. Jeedrak, A. Ochab-Marcinek, P. Pasitsuparoad, C. Radzewicz, P. Wnuk, A. Rosspeintner. J. Chem. Phys., 146, 244505 (2017). DOI: 10.1063/1.4990044
- T. Kumpulainen, B. Lang, A. Rosspeintner, E. Vauthey. Chem. Rev., 117, 10826 (2017). DOI: 10.1021/acs.chemrev.6b00491
- S.V. Feskov, V.A. Mikhailova, A.I. Ivanov. J. Photochem. Photobiol. C., 29, 48 (2016). DOI: 10.1016/j.jphotochemrev.2016.11.001
- A.I. Ivanov, V.A. Mikhailova. Uspekhi khimii, 79 (12), 1139 (2010). [A.I. Ivanov, V.A. Mikhailova. Russ. Chem. Rev., 79 (12), 1047 (2010). DOI: 10.1070/RC2010v079n12ABEH004167]
- T. Asahi, N. Mataga. J. Phys. Chem., 95, 1956 (1991). DOI: 10.1021/j100158a014
- E. Akesson, G. Walker, P. Barbara. J. Chem. Phys., 95 (6), 4188 (1991). DOI: 10.1063/1.460774
- S.M. Swicka, W. Zhua, M. Mattaa, T.J. Aldricha, A. Harbuzaruc, J.T.L. Navarretec, R.P. Ortizc, K.L. Kohlstedta, G.C. Schatza, A. Facchettia, F.S. Melkonyana, T.J. Marks. Proc. Nat. Acad. Sc., 115 (36) E834 (2018). DOI: 10.1073/pnas.1807535115
- G.D. Tainter, M.T. Horantner, Luis M. Pazos-Outon, R.D. Lamboll, H. \=Abolinvs, T. Leijtens, S. Mahesh, R.H. Friend, H.J. Snaith, H.J. Joyce, F. Deschler. Joule. 3 (5),1301 (2019). DOI: 10.1016/j.joule.2019.03.010
- A.A. Ovchinnikov, M.Ya. Ovchinnikova. ZhETF, 56 (4), 1278 (1969). [A.A. Ovchinnikov, M.Ya. Ovchinnikova. Sov. Phys. JETP, 29 (4), 688 (1969).]
- H. Frohlich. Theory of dielectrics: Dielectric constant and dielectric loss, 2nd ed. (Clarendon Press, Oxford, 1958)
- Y. Tanimura, S. Mukamel. Quantum brownian oscillator analysis of pump-probe spectroscopy in the condensed phase, Ultrafast Dynamics of Chemical Systems, (Springer, Dordrecht, 1994)
- S. Mukamel. Principles of Nonlinear Optical Spectroscopy, (Oxford university press, New York, 1995)
- W. Domcke, G. Stock. Adv. Chem. Phys., 100, 1 (1997). DOI:10.1002/9780470141595.ch1
- D.-Y. Yang, S.-Y. Sheu. J. Chem. Phys., 106 (23), 9427 (1997). DOI:10.1063/1.473847
- C.P. Koch, T. Kluner, R. Kosloff. J. Chem. Phys., 116 (18), 7983 (2002). DOI: 10.1063/1.1450124
- S.A. Kovalenko, N. Eilers-Konig, T.A. Senyushkina, N.P. Ernsting. J. Phys. Chem. A, 105 (20), 4834 (2001). DOI: 10.1021/jp004007e
- D. Egorova, M.F. Gelin, W. Domcke. J. Chem. Phys., 122 (13), 134504 (2005). DOI: 10.1063/1.1862618
- R.G. Fedunov, I.P. Yermolenko, A.E. Nazarov, A.I. Ivanov, A. Rosspeintner, G. Angulo. J. Mol. Liq., 298, 112016 (2020). DOI: 10.1016/j.molliq.2019.112016
- A.E. Nazarov, A.I. Ivanov, A. Rosspeintner, G. Angulo. J. Mol. Liq., 360, 119387 (2022). DOI: 10.1016/j.molliq.2022.119387
- M.L. Horng, J.A. Gardecki, A. Papazyan, M. Maroncelli. J. Phys. Chem., 99, 17311 (1995). DOI: 10.1021/j100048a004
- M. Maroncelli, V.P. Kumar, A. Papazyan. J. Phys. Chem., 97, 13 (1993). DOI: 10.1021/j100103a004
- L.D. Zusman, A.B. Gelman. Opt. i spektr., 53 (3), 248 (1982) (in Russian)
- A.J. Leggett, S. Chakravarty, A.T. Dorsey, M. Gary. Rev. Mod. Phys., 59 (1), 1 (1987). DOI: 10.1103/RevModPhys.59.1
- A.O. Caldeira, A.J. Leggett. Ann. Phys. (N.Y.) 149 (2), 374 (1983). DOI: 10.1016/0003-4916(83)90202-6
- A. Garg, J.N. Onuchic, V. Ambegaoka. J. Chem. Phys., 83 (9), 4491 (1985). DOI: 10.1063/1.449017
- A.I. Ivanov, G.S. Lomakin, V.A. Mikhailova. Chem. Physics, 10 (5), 638 (1991). [A.I. Ivanov, G.S. Lomakin, V.A. Mikhailova. Soviet J. Chem. Phys., 10 (5), 972 (1992)]
- A.I. Ivanov, V.V. Potovoi. Chem. Phys., 247 (2), 245 (1999). DOI: 10.1016/S0301-0104(99)00197-4
- B.D. Fainberg, D. Huppert. Adv. Chem. Phys., 107, 191 (1999)
- L.D. Zusman. Chem. Phys., 49 (2), 295 (1980). DOI: 10.1016/0301-0104(80)85267-0
- D.F. Calef, P.G. Wolynes. J. Phys. Chem., 87 (18), 3387 (1983). DOI: 10.1021/j100241a008
- R. Kubo, Y. Toyozawa. Progress of Theoretical Physics, 13 (2), 160 (1955). DOI: 10.1143/PTP.13.160
- J.-L. Chang, J. Mol. Spectrosc., 232, 102 (2005). DOI: 10.1016/j.jms.2005.03.004
- I.P. Ermolenko, V.A. Mikhailova, A.I. Ivanov. Izvestiya UNTS RAN, 27 (1), (2021) (in Russian) DOI: 10.31040/2222-8349-2021-0-1-27-32
- B. Bagchi, R. Biswas. Adv. Chem. Phys., 109, 207 (1999)
- A.I. Ivanov, A.O. Kichigina. Khim. fizika, 31 (3), 3 (2012). [A.I. Ivanov, A.O. Kichigina. Russ. J. Phys. Chem. B, 6 (2), 175(2012). DOI: 10.1134/S1990793112020066]
- A.E. Nazarov, A.I. Ivanov. Computer Physics Communications, 270, 108178 (2022). DOI: 10.1016/j.cpc.2021.108178
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.