Investigation of the system AgBr-AgI optical materials volt-ampere characteristics
Turabi A.1, Akif’eva N. N.1, Korsakov A. S.1, Zhukova L. V.1, Yuzhakova A. A.1, Salimgareev D. D.1, Zelenkova J. O.1
1Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
Email: l.v.zhukova@urfu.ru

PDF
IR light guides based on crystals and ceramics of the AgBr-AgI system are transparent in the mid-infrared range from 2 to 25 μm, which is in demand for thermal imaging, laser technology and spectroscopy. High photo- and radiation resistance makes these materials particularly attractive. For the design of optical equipment, information is needed on the electrical properties of the material, which are most fully characterized by the current-voltage characteristic (VAC). In this work, the dependence of VAC of the studied materials in the range of compositions from 5 to 80 mol.% AgI in the system AgBr-AgI on the composition of the material and temperature in the range of 298-453 K. It has been established that an increase in the iodine content for crystalline materials of AgBr-AgI systems leads to a decrease in electrical conductivity. The values of specific conductivity under equal conditions (the same temperature and the same applied voltage) for ceramics of the AgBr-AgI system are two to three orders of magnitude higher than for crystals. The values of specific conductivity for ceramics are at the level of conductivity of solid electrolytes. At the temperature of the β-AgI-α-AgI phase transition in ceramics of the AgBr-AgI systems, a jump in conductivity is observed, which is explained by the β-AgI-α-AgI phase transition. Keywords: Solid solutions of the AgBr-AgI system, current-voltage characteristic, specific conductivity
  1. D. Salimgareev, A. Lvov, L. Zhukova, D. Belousov, A. Yuzhakova, D. Shatunova, A. Korsakov, A. Ishchenko. Optics and Laser Technology, 149, 107825 (2022). DOI: 10.1016/j.optlastec.2021.107825
  2. D. Salimgareev, A. Lvov, A. Yuzhakova, D. Shatunova, D. Belousov, A. Korsakov, L. Zhukova. Optical Materials, 125, 112124 (2022)
  3. D.D. Salimgareev, A.A. Yuzhakova, A.E. Lvov, L.V. Zhukova, A.S. Korsakov. Foton-ekspress, 6 (174), 80-81 (2021) (in Russian). DOI: 10.24412/2308-6920-2021-6-80-81
  4. A.A. Yuzhakova, D.D. Salimgareyev, A.Ye. L'vov, A.S. Korsakov, L.V. Zhukova. Lazerno-informatsionnyye tekhnologii: trudy XXIX Mezhdunarodnoy nauchnoy konferentsii (BGTU, Novorossiysk, 2021), p. 126-127 (in Russian)
  5. L.V. Zhukova, A.E. Lvov, D.D. Salimgareev, V.S. Korsakov. Opt. Spectrosc. 125 (6), 933-943 (2018). DOI: 10.1134/S0030400X18120238
  6. M.P. Kharain, V.S. Kostarev, N.N. Akif'eva, A.A. Yuzhakova, L.V. Zhukova, A.S. Korsakov. Containment. 2021 In: IOP Conf. Ser.: Mater. Sci. Eng., 1089, 012048 (2021). DOI: 10.1088/1757-899X/1089/1/012048
  7. A. Turabi, A.S. Korsakov, L.V. Zhukova, B.P Zhilkin. Optical Materials, 109 (4), 110215 (2020). DOI: 10.1016/j.optmat.2020.110215
  8. E. Korsakova, A. Lvov, D. Salimgareev, A. Korsakov, S. Markham, A. Mani, C. Silien, T.A.M. Syed, L. Zhukova. Infrared Physics and Technology, 93, 171-177 (2018). DOI: 10.1016/j.infrared.2018.07.031".2018.07.031
  9. National standard of the Russian Federation "Facilities for measuring side electromagnetic radiation and pickup parameters.GOST R 53112-2008. [Electronic resource]. URL: https://docs.cntd.ru/document/1200075567
  10. Standard of the company JSC "FGC UES", "Guidelines for determining the induced voltage on disconnected overhead lines located near operating OHLs", STO 56947007-29.240.55.018-2009 [Electronic resource]. URL: https://www.fsk-ees.ru/upload/docs/STO-56947007- 29.240.55.018-2009.pdf
  11. J. Wang, S. Wang, L. Cai, D. Lu, Q. Li, M. Zhou, Y. Fan. IEEE transactions on power delivery, 35 (4), 1968-1976 (2020). DOI: 10.1109/TPWRD.2019.2958182
  12. A.K. Ivanov-Shits, I.V. Murin. Ionika tverdogo tela. V1 (SPbGU, Sankt-Peterburg, 2000) (in Russian)
  13. V.V. Tomaev, Y.S. Tver'yanovich, M.D. Bal'makov. Crystallography Rep., 57 (7), 948-954 (2012)
  14. L.S. Cain, L.M. Slifkin. J. Phys. Chem. Solids, 41, 173-178 (1978)
  15. A. Yuzhakova, D. Salimgareev, A. Turabi, A. Korsakov, L. Zhukova. Optics and Laser Technology, 139, 106995 (2021). DOI: 10.1016/j.optlastec.2021.106995
  16. Elementarnyy uchebnik fiziki. Ed. G.S. Landsberg. V. II. Elektrichestvo i magnetizm (Nauka, Moskva, 1985) 479 p (in Russian)
  17. A.K. Ivanov-Shits, I.V. Murin. Ionika tverdogo tela. V2 (SPbGU, Sankt-Peterburg, 2000) (in Russian)
  18. S. Ono, R. Tomizawa, T. Nagai, Phase Transitions, 93 (9), 856-864 (2020). DOI: 10.1080/01411594.2020.1798956
  19. T. Tani, H. Mifune, S. Yamashita, S. Aiba, T. Ohzeki, K. Yamane, J. Imaging Sci. Technol., 51 (3), 202-206 (2007) DOI: 10.2352/J.ImagingSci.Technol.(2007)51:3(202)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru