Laser pulse energy localization in a photoconductive THz emitter via sapphire fibers
Ponomarev D. S.1, Lavrukhin D. V.1,2, Zenchenko N. V.3, Glinskiy I. A.3, Khabibullin R. A.1,2, Kurlov V. N.4, Zaytsev K. I.5
1 Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow, Russia
2Bauman Moscow State Technical University, Moscow, Russia
3MIREA - Russian Technological University, Moscow, Russia
4Osipyan Institute of Solid State Physics RAS Russian Academy of Sciences Chernogolovka, Moscow District, Russia
5Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: ponomarev_dmitr@mail.ru, denis_lavruhin@mail.ru, zenchenko.nikolay@yandex.ru, khabibullin_r@mail.ru, kurlov59@gmail.com, kirzay@gmail.com
We report a seminal approach for localization of photocarriers in a photoconductive antenna (PCA)-emitter via a focusing element comprising the sapphire fiber. Using numerical simulation, we showed that at a certain ratio between the fiber diameter and antenna gap size (d/g~ 22.5), one can attain a ~ 35-fold enhancement of laser irradiation in the vicinity of the PCA electrodes. This provides the formation of subwavelength electromagnetic wave caustics located at the edges of the PCA electrodes, which potentially promotes an increase in the optical-to-terahertz conversion efficiency. Keywords: terahertz frequency, terahertz emitters, semiconductors, photoconductive antenna, IR radiation.
- A.I. Romero, A. Mukherjee, A.F. Olvera, M.M. Aller, S. Preu, Nature Commun., 12, 7091 (2021). DOI: 10.1038/s41467-021-27264-x
- A.E. Yachmenev, R.A. Khabibullin, D.S. Ponomarev, J. Phys. D: Appl. Phys., 55 (19), 193001 (2022). DOI: 10.1088/1361-6463/ac43dd
- A. Singh, J. Li, A. Pashkin, R. Rana, S. Winnerl, M. Helm, H. Schneider, Opt. Express, 29 (13), 19920 (2021). DOI: 10.1364/OE.427247
- P. Fosodeder, S. Hubmer, A. Ploier, R. Ramlau, S. van Frank, C. Rankl, Opt. Express, 29 (10), 15711 (2021). DOI: 10.1364/OE.422961
- A. Singh, A. Pashkin, S. Winnerl, M. Helm, H. Schneider, ACS Photon., 5 (7), 2718 (2018). DOI: 10.1021/acsphotonics.8b00460
- D.S. Ponomarev, A. Gorodetsky, A.E. Yachmenev, S.S. Pushkarev, R.A. Khabibullin, M.M. Grekhov, K.I. Zaytsev, D.I. Khusyainov, A.M. Buryakov, E.D. Mishina, J. Appl. Phys., 125 (15), 151605 (2019). DOI: 10.1063/1.5079697
- D.V. Lavrukhin, A.E. Yachmenev, A.Yu. Pavlov, R.A. Khabibullin, Y.G. Goncharov, I.E. Spektor, G.A. Komandin, S.O. Yurchenko, N.V. Chernomyrdin, K.I. Zaytsev, D.S. Ponomarev, Semicond. Sci. Technol., 34 (3), 034005 (2019). DOI: 10.1088/1361-6641/aaff31
- A.V. Gorbatova, D.I. Khusyainov, A.E. Yachmenev, R.A. Khabibullin, D.S. Ponomarev, A.M. Buryakov, E.D. Mishina, Tech. Phys. Lett., 46, 1111 (2020). DOI: 10.1134/S1063785020110218
- K.I. Zaytsev, G.M. Katyba, N.V. Chernomyrdin, I.N. Dolganova, A.S. Kucheryavenko, A.N. Rossolenko, V.V. Tuchin, V.N. Kurlov, M. Skorobogatiy, Adv. Opt. Mater., 8 (18), 2000307 (2020). DOI: 10.1002/adom.202000307
- C.W. Berry, M. Jarrahi, New J. Phys., 14, 105029 (2012). DOI: 10.1088/1367-2630/14/10/105029
- I.A. Glinskiy, N.V. Zenchenko, D.S. Ponomarev, Ros. tekhnol. zhurn., 8 (6), 78 (2020). (in Russian) DOI: 10.32362/2500-316X-2020-8-6-78-86
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.