An influence of mechanical stresses on the magnitude of the internal field in lead zirconate titanate thin films
Valeeva A. R.
1, Kaptelov E. Yu.
1, Senkevich S. V.
1, Pronin I. P.
1, Nemov S. A.
2, Pronin V. P.
31Ioffe Institute, St. Petersburg, Russia
2Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
3Herzen State Pedagogical University of Russia, St. Petersburg, Russia
Email: ValeevaAR@mail.ioffe.ru, Kaptelov@mail.ioffe.ru, Senkevichsv@mail.ioffe.ru, Petrovich@mail.ioffe.ru, nemov_s@mail.ru, pronin.v.p@yandex.ru
In self-polarized lead zirconate titanate thin films formed on platinized silicon substrates, a significant increase in the internal electric field was observed as a result of long-term aging. To explain this phenomenon, a mechanism is proposed for the formation of the internal field associated with the diffusion of charged oxygen vacancies, which, in turn, is due to the action of a mechanical stress gradient. The diffusion coefficient of charged oxygen vacancies was estimated to be ~ 3·10-16 cm2/s. Keywords: thin films, lead zirconate titanate, internal field, Gorsky effect.
- Y. Ma, J. Son, X. Wang, Y. Liu, J. Zhou, Coatings, 11 (8), 944 (2021). DOI: 10.3390/coatings11080944
- L. Song, S. Glinsek, E. Defay, Appl. Phys. Rev., 8 (4), 041315 (2021). DOI: 10.1063/5.0054004
- A.A. Bukharaev, A.K. Zvezdin, A.P. Pyatakov, Yu.K. Fetisov, Phys. Usp., 61 (12), 1175 (2018). DOI: 10.3367/UFNe.2018.01.038279
- A.L. Kholkin, K.G. Brooks, D.V. Taylor, S. Hiboux, N. Setter, Integr. Ferroelectrics, 22 (1-4), 525 (1998). DOI: 10.1080/10584589808208071
- V.P. Afanasjev, A.A. Petrov, I.P. Pronin, E.A. Tarakanov, E.Yu. Kaptelov, J. Graul, J. Phys.: Condens. Matter, 13 (39), 8755 (2001). DOI: 10.1088/0953-8984/13/39/304
- T. Ogawa, A. Senda, T. Kasanami, Jpn. J. Appl. Phys., 30 (9S), 2145 (1991). DOI: 10.1143/JJAP.30.2145
- I.P. Pronin, E.Yu. Kaptelov, A.V. Gol'tsev, V.P. Afanas'ev, Phys. Solid State, 45 (9), 1768 (2003). DOI: 10.1134/1.1611249
- A. Gruverman, B.J. Rodriguez, A.I. Kingon, R.J. Nemanich, A.K. Tagantsev, J.S. Cross, M. Tsukada, Appl. Phys. Lett., 83 (4), 728 (2003). DOI: 10.1063/1.1593830
- P.V. Yudin, A.K. Tagantsev, Nanotechnology, 24 (43), 432001 (2013). DOI: 10.1088/0957-4484/24/43/432001
- E. Sviridov, I. Sem, V. Alyoshin, S. Biryukov, V. Dudkevich, Mater. Res. Soc. Symp. Proc., 361, 141 (1994). DOI: 10.1557/PROC-361-141
- L.M. Garten, S. Trolier-McKinstry, J. Appl. Phys., 117 (9), 094102 (2015). DOI: 10.1063/1.4913858
- L.A. Delimova, N.V. Zaitseva, V.V. Ratnikov, V.S. Yuferev, D.S. Seregin, K.A. Vorotilov, A.S. Sigov, Phys. Solid State, 63, 1145 (2021). DOI: 10.1134/S1063783421080060
- S. Okamura, S. Miyata, Y. Mizutani, T. Nishida, T. Shiosaki, Jpn. J. Appl. Phys., 38 (9S), 5364 (1999). DOI: 10.1143/JJAP.38.5364
- I.P. Pronin, E.Yu. Kaptelov, E.A. Tarakanov, V.P. Afanas'ev, Phys. Solid State, 44 (9), 1736 (2002). DOI: 10.1134/1.1507258
- D.M. Dolgintsev, V.P. Pronin, E.Yu. Kaptelov, S.V. Senkevich, I.P. Pronin, Tech. Phys. Lett., 45 (3), 246 (2019). DOI: 10.1134/S1063785019030258
- W.S. Gorsky, Phys. Z. Sow., 8, 457 (1935)
- A.M. Kosevich, Sov. Phys. Usp., 17, 920 (1975). DOI: 10.1070/PU1975v017n06ABEH004405
- V.I. Barbashov, Yu.A. Komysa, Phys. Solid State, 47 (2), 238 (2005). DOI: 0.1134/1.1866400
- I.P. Pronin, S.A. Kukushkin, V.V. Spirin, S.V. Senkevich, E.Yu. Kaptelov, D.M. Dolgintsev, V.P. Pronin, D.A. Kiselev, O.N. Sergeeva, Mater. Phys. Mech., 30 (1), 20 (2017). https://www.ipme.ru/e-journals/MPM/no_13017/MPM130_ 02_pronin.pdf
- G. Holzlechner, D. Kastner, C. Slouka, H. Hutter, J. Fleig, Solid State Ionics, 262, 625 (2014). DOI: 10.1016/j.ssi.2013.08.027
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.