The effect of maintaining a high conductivity state in high-voltage GaAs diodes switched-on in the delayed avalanche breakdown mode
Rozhkov A.V.
1, Ivanov M.S.
1, Rodin P.B.
11Ioffe Institute, St. Petersburg, Russia
Email: rozh@hv.ioffe.rssi.ru
It is experimentally established that high-voltage GaAs diodes maintain conducting state with low residual voltage after switching to the conducting state in the delayed impact-ionization mode. The duration of the constant current in the reversely-biased structure is determined by the duration of the applied rectangular voltage pulse (up to 100 ns) and significantly exceeds drift extraction and recombination times. The discovered effect of self-supporting conducting state resembles the "lock-on" effect in optically activated GaAs semiconductor switches and S-diodes with deep centers. The effect can be explained by shock ionization in narrow collapsing Gann domains. Keywords: high-voltage GaAs diodes, "lock-on" effect.
- S.S. Khludkov, Sov. Phys. J., 26 (10), 928 (1983). DOI: 10.1007/BF00896647
- S.S. Khludkov, O.P. Tolbanov, A.V. Koretskii, Sov. Phys. J., 29 (4), 298 (1986). DOI: 10.1007/BF00893001
- F.J. Zutavern, G.M. Loubriel, M.W. O'Malley, L.P. Shanwald, W.D. Helgerson, D.L. McLaughlin, B.B. McKenzee, IEEE Trans. Electron Dev., 37 (12), 2472 (1990). DOI: 10.1109/16.64520
- High-power optically activated solid-state switches, ed. by A. Rosen, F. Zutavern (Artech House, Boston-London, 1994)
- L. Hu, J. Su, Z. Ding, Q. Hao, X. Yuan, J. Appl. Phys., 115 (9), 094503 (2014). DOI: 10.1063/1.4866715
- L. Hu, M. Xu, X. Li, Y. Wang, Y. Wang, H. Dong, H. Schneider, IEEE Trans. Electron Dev., 67 (11), 4963 (2020). DOI: 10.1109/TED.2020.302598
- S.N. Vainshtein, V.S. Yuferev, J.T. Kostamovaara, J. Appl. Phys., 97 (2), 024502 (2005). DOI: 10.1063/1.1839638
- I.A. Prudaev, M.G. Verkholetov, A.D. Koroleva, O.P. Tolbanov, Tech. Phys. Lett., 44 (6), 465 (2018). DOI: 10.1134/S106378501806007X
- I.A. Prudaev, V.L. Oleinik, T.E. Smirnova, V.V. Kopyev, M.G. Verkholetov, E.V. Balzovsky, O.P. Tolbanov, IEEE Trans. Electron Dev., 65 (8), 3339 (2018). DOI: 10.1109/TED.2018.2845543
- I.A. Prudaev, S.N. Vainshtein, M.G. Verkholetov, V.L. Oleinik, V.V. Kopyev, IEEE Trans. Electron Dev., 68 (1), 57 (2021). DOI: 10.1109/TED.2020.3039213
- Zh.I. Alferov, I.V. Grekhov, V.M. Efanov, A.F. Kardo-Sisoev, V.I. Korol'kov, M.N. Stepanova, Sov. Tech. Phys. Lett., 13 (9), 454 (1988)
- S.N. Vainshtein, Yu.V. Zhilyaev, M.E. Levinshtein, Sov. Tech. Phys. Lett., 14 (8), 664 (1989)
- V.I. Brylevskii, A.V. Rozhkov, I.A. Smirnova, P.B. Rodin, I.V. Grekhov, Tech. Phys. Lett., 41 (4), 307 (2015). DOI: 10.1134/S1063785015040045
- V.I. Korol'kov, A.V. Rozhkov, F.Yu. Soldatenkov, K.V. Yevstigneyev, in 4th Int. Seminar on power semiconductors (ISPS'98) (Prague, 1998), p. 163
- S.K. Lyubutin, S.N. Rukin, B.G. Slovikovsky, S.N. Tsyranov, Semiconductors, 47 (5), 670 (2013). DOI: 10.1134/S1063782613050151
- L.S. Berman, V.G. Danil'chenko, V.I. Korol'kov, F.Yu. Soldatenkov, Semiconductors, 34 (5), 541 (2000). DOI: 10.1134/1.1188024
- S.S. Khludkov, O.P. Tolbanov, M.D. Vilisova, I.A. Prudaev, Poluprovodnikovye pribory na osnove arsenida galliya s glubokimi primesnymi tsentrami (Izd. dom Tomsk. gos. univ., Tomsk, 2016) (in Russian)
- S. Vainshtein, J. Kostamovaara, V. Yuferev, W. Knap, A. Fatimy, N. Diakonova, Phys. Rev. Lett., 99 (17), 176601 (2007). DOI: 10.1103/PhysRevLett.99.176601
- S.N. Vainshtein, G. Duan, V.S. Yuferev, V.E. Zemlyakov, V.I. Egorkin, N.A. Kalyuzhnyy, N.A. Maleev, A.Yu. Egorov, J.T. Kostamovaara, Appl. Phys. Lett., 115 (12), 123501 (2019). DOI: 10.1063/1.5091616
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.