Reflectometric temperature measurement using a single-mode-multimode-single-mode" fiber optic structure
Igumenov A. Yu.1,2, Melnikov I. V. 1,3, Afanasiev A. A.1, Popova S. S.1, Lukinykh S. N.2,4, Tambasov I. A.5,6
1Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
2T8 LLC, Moscow, Russia
3Sadovsky Institute of Geosphere Dynamics of Russian Academy of Sciences. Moscow, Russia
4Lomonosov Moscow State University, Moscow, Russia
5Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
6LLC "Scientific and production company "Spetstechnauka", Krasnoyarsk, Russia
Email: igumenov.au@mipt.ru
It is shown the "single-mode-multimode-single-mode" structure allows carrying out remote temperature measurement with optical time domain reflectometer. A multimode fiber length was 10 mm. We used the temperature range from 30 to 70oC and wavelengths of 1310 and 1550 nm. The total length of a single-mode fiber-optic line for reflectometric measurements was 20 km. Keywords: fiber optics, fiber optic sensors, optical fiber reflectometry, multimode interference.
- H.F. Talbot, Lond. Edinb. Dubl. Phil. Mag. J. Sci., Ser. 3, 9, 401 (1836). DOI: 10.1080/14786443608649032
- Lord Rayleigh, Lond. Edinb. Dubl. Phil. Mag. J. Sci., Ser. 5, 11, 196 (1881). DOI: 10.1080/14786448108626995
- J.T. Winthrop, C.R. Worthington, J. Opt. Soc. Am., 55, 373 (1965). DOI: 10.1364/JOSA.55.000373
- W.D. Montgomery, J. Opt. Soc. Am., 57, 772 (1967). DOI: 10.1364/JOSA.57.000772
- M.V. Berry, S. Klein, J. Mod. Opt., 43, 2139 (1996). DOI: 10.1080/09500349608232876
- T. Saastamoinen, J. Tervo, P. Vahimaa, J. Turunen, J. Opt. Soc. Am. A, 21, 1424 (2004). DOI: 10.1364/JOSAA.21.001424
- L.B. Soldano, E.C.M. Pennings, J. Lightwave Technol., 13, 615 (1995). DOI: 10.1109/50.372474
- K. Okamoto, Fundamentals of optical waveguides (Academic Press, London, 2006)
- W.S. Mohammed, A. Mehta, E.G. Johnson, J. Lightwave Technol., 22, 469 (2004). DOI: 10.1109/JLT.2004.824379
- W.S. Mohammed, P.W.E. Smith, X. Gu, Opt. Lett., 31, 2547 (2006). DOI: 10.1364/OL.31.002547
- K. Krupa, A. Tonello, B. Shalaby, A. Barthelemy, G. Millot, S. Wabnitz, V. Couderc, Nature Photon., 11, 237 (2017). DOI: 10.1038/nphoton.2017.32
- A.V. Kir'yanov, S.M. Klimentov, I.V. Mel'nikov, A.V. Shestakov, Opt. Commun., 282, 4759 (2009). DOI: 10.1016/j.optcom.2009.08.062
- A.A. Machnev, P.B. Novozhylov, A.A. Poimanov, I.V. Mel'nikov, Opt. Mater. Express, 3, 1608 (2013). DOI: 10.1364/OME.3.001608
- N.S. Balakleyskiy, A.A. Machnev, I.V. Mel'nikov, in Nonlinear optics, OSA Technical Digest (online) (Optica Publ. Group, 2017), paper NTu3A.6. DOI: 10.1364/NLO.2017.NTu3A.6
- D.A. May-Arrioja, J.E. Antonio-Lopez, J.J. Sanchez-Mondragon, P. LiKamWa, in Advanced lasers, ed. by O. Shulika, I. Sukhoivanov (Springer, Cham, 2015), p. 19. DOI: 10.1007/978-94-017-9481-7_2
- J.R. Guzman-Sepulveda, R. Guzman-Cabrera, A.A. Castillo-Guzman, Sensors, 21, 1862 (2021). DOI: 10.3390/s21051862
- K. Harris, D. White, D. Melanson, C. Samson, T.M. Daley, Int. J. Greenhouse Gas Control, 50, 248 (2016). DOI: 10.1016/j.ijggc.2016.04.016
- S. Wang, X. Fan, Q. Liu, Z. He, Opt. Express, 23, 33301 (2015). DOI: 10.1364/OE.23.033301
- Q. Jiang, Y.-Sh. Kang, Optoelectron. Lett., 6, 306 (2010). DOI: 10.1007/s11801-010-0011-x
- H. Kang, D. Kim, M. Song, Proc. SPIE, 8439, 84392C (2012). DOI: 10.1117/12.923271
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.