Influence of matrix absorbance on the near-field and spectral characteristics of plasmon spherical nanoparticles scattering
Dynich R. A.1, Ponyavina A. N.2
1Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
2B.I.Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
Email: radynich@gmail.com, a.ponyavina@ifanbel.bas-net.by
Regularities of a size dependence of extinction and absorption efficiency factors as well as of near-zone and far-zone scattering efficiency factors are studied in the spectral range of the surface plasmon resonance of absorption (SPRA) for silver spherical nanoparticles placed into absorbing matrixes with complex refraction index nm+ikappam. Numerical simulation was made with the use of the Mie theory for absorbing matrixes. Approximation of the electron mean free path limitation was used in order to take into account the intrinsic size effects into a metal nanoparticle which consist in a size dependence of its dielectric characteristics. We shown that a growth of matrix absorbency leads to a strong suppression of resonances of extinction Qext and near-zone scattering QNF efficiency factors without any essential changing of their spectral position. We established that for any fixed wavelength in the spectral range of the SPRA the values of Qext and QNF depend on metal nanoparticle sizes nonmonotonically at kappam=0-0.1. The RNP optimal value, which corresponds to the maximal values of efficiency factors for the given material of plasmonic nanoparticles, increases at the matrix absorbency growth. The intrinsic size effects contribution to the efficiency factors resonance suppression decreases at the enhancement of nanoparticle sizes and/or matrix absorption. As an example of a real absorbing matrix with a dispersion of relraction index we considered the nickel phtalocyanine matrix (NiPc), which is interesting from the point of view of photovoltaic applications. Keywords: Plasmonic naniparticles, absorbing matrixes, characteristics of near-zone and far-zone scattering.
- U. Kreibig, M. Volmer. Optical properties of metal clusters (Springer-Verlag, Berlin, 1995)
- B.J. Messinger, K.U. von Raben, R.K. Chang, P.W. Barber. Phys. Rev. B, 24 (2), 649 (1981). DOI: 10.1103/PhysRevB.24.649
- M. Quinten. Appl. Phys. B, 73, 245 (2001). DOI: 10.1007/s003400100650
- C. Bohren, D. Huffman. Pogloshcheniye i rasseyaniye sveta malymi chastitsami (Mir, M., 1986). (in Russian)
- N.G. Khlebtsov, L.A. Trachuk, A.G. Melnikov. Opt. i spektr., 98 (1), 82 (2005) (in Russian)
- R. Cheng, T. Furtak. Gigantskoye kombinatsionnoye rasseyaniye (Mir, M., 1984). (in Russian)
- P. Matheu, S.H. Lim, D. Derkacs, C. McPheeters, E.T. Yu. Appl. Phys. Lett., 93, 113108 (2008). DOI: 10.1063/1.2957980
- K. Nakayama, K. Tanabe, H.A. Atwater. Appl. Phys. Lett., 93, 121904 (2008). DOI: 10.1063/1.2988288
- C.S. Solanki, G. Beaucarne. Energy for Sustainable Development, XI (3), 17 (2007). DOI: 10.1016/S0973-0826(08)60573-6
- V.N. Bogach, R.A. Dynich, A.D. Zamkovets, A.N. Ponyavina. Physics and Chemistry of Solid State, 12 (4), 955 (2011)
- A.D. Zamkovets, A.N. Ponyavina. Zhurn. prikl. spektr., 79 (6), 907(2012 ) (in Russian)
- N.A. Toropov, E.N. Kaliteevskaya, N.B. Leonov, T.A. Vartanyan. Opt. i spektr., 113 (6), 684 (2012) (in Russian)
- N.A. Toropov, A.A. Starovoytov, N.B. Leonov, E.N. Kaliteevskaya, T.A. Vartanyan. Izvestiya Vuzov. Fizika, 55 (8/2), 234 (2012) (in Russian)
- O. Stenzel, A.N. Lebedev, M. Schreiber, D.R.T. Zahn. Thin Solid Films, 372, 200 (2000). DOI: 10.1016/S0040-6090(00)01029-4
- M. Quintem, J. Rostalki. Part. Part. Syst. Charact., 13, 89 (1996). DOI: 10.1002/ppsc.19960130206
- A.N. Lebedev, M. Gartz, U. Kreibig, O. Stenzel. Eur. Phys. J. D, 6 (3), 365 (1999). DOI: 10.1007/s100530050320
- Q. Fu, W. Sun. Appl. Opt., 40 (9), 1354 (2001). DOI: 10.1364/AO.40.001354
- I.W. Sudiarta, P. Chylek. J. Opt. Soc. Am. A, 18 (6), 1275 (2001). DOI: 10.1364/JOSAA.18.001275
- W.C. Mundy, J.A. Roux, A.M. Smith. J. Opt. Soc. Am., 64 (12), 1593 (1974). DOI: 10.1364/JOSA.64.001593
- P. Chylek. J. Opt. Soc. Am., 67 (4), 561 (1977). DOI: 10.1364/JOSA.67.000561
- R.A. Dynich. J. Opt. Soc. Am. A, 28 (2), 222 (2011). DOI: 10.1364/JOSAA.28.000222
- M.I. Mishchenko. Optics Express, 15 (20), 13188 (2007). DOI: 10.1364/OE.15.013188
- R.A. Dynich, A.N. Ponyavina, V.V. Filippov. Zhurn. prikl. spektr., 76 (5), 746 (2009) (in Russian)
- R.A. Dynich, A.N. Ponyavina, V.V. Filippov. Opt. i spektr., 110 (6), 909 (2011)(in Russian)
- R.A. Dynich, A.N. Ponyavina. Zhurn. prikl. spektr., 75 (6), 831 (2008) (in Russian)
- U. Kreibig, C.V. Fragstein. Z. Phys., 224 (4), 307 (1969). DOI: 10.1007/BF01393059
- A.V. Uskov, I.E. Protsenko, N.A. Mortensen, E.P. O'Reilly. Plasmonics, 9, 185 (2014). DOI: 10.1007/s11468-013-9611-1
- A.D. Kondorskiy, V.S. Lebedev. J. Russ. Laser Res., 42, 697 (2021). DOI: 10.1007/s10946-021-10012-3
- S.M. Kachan, A.N. Ponyavina. J. Phys.: Condens. Matter, 14, 103 (2002)
- V.S. Lebedev, A.S. Medvedev. Quantum Electron., 42 (8), 701 (2012). DOI: 10.1070/QE2012v042n08ABEH014833
- S.M. Kachan, A.N. Ponyavina. J. Mol. Struct., 563- 564, 267 (2001). DOI: 10.1016/S0022-2860(00)00882-6
- T.V. Teperik, V.V. Popov, F.J. Garcia de Abajo. Physical Rewiew B, 69, 155402 (2004). DOI: 10.1103/PhysRevB.69.155402
- B.N. Khlebtsov, V.A. Bogatyrev, L.A. Dykman, N.G. Khlebtsov. Opt. i spektr., 102 (2), 269 (2007) (in Russian)
- P.B. Johnson, R.W. Christy. Phys. Rev. B, 6 (12), 4370 (1972). DOI: 10.1103/PhysRevB.6.4370
- A.S. Marfunin. Spektroskopiya, lyuminestsentsiya i radiatsionnyye tsentry v mineralakh (Nedra, M., 1975) (in Russian)
- M.M. El-Nahass, K.F. Abd-El-Rahman, A.A.M. Farag, A.A.A. Darwish. Intern. J. Modern Physics B, 18 (3), 421 (2004). DOI: 10.1142/S0217979204023982
- R.A. Dynich. Certificate of voluntary registration and depositing of the copyright object/related rights object. NATIONAL CENTER OF INTELLECTUAL PROPERTY OF THE REPUBLIC OF BELARUS, 1519-CP (2022).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.