The simulation of proton beam passage through thin gold films
Babenko P. Yu.1, Zinoviev A. N.1, Tensin D.S.1
1Ioffe Institute, St. Petersburg, Russia
Email: babenko@npd.ioffe.ru, zinoviev@inprof.ioffe.ru, daria.tensin@gmail.com

PDF
The results of calculating the energy spectra of protons transmitted and reflected from thin layers of gold are presented. The simulation results are compared with experimental data. It is shown that the stopping measurement results are affected by such factors as the multiple scattering, the geometry of the experiment, and the morphology and roughness of the target. An analysis of the angular dependence for particles passing through a thin film makes it possible to obtain information about the interaction potential between a particle and a solid. The obtained results on the potential agree with the data from experiments on the reflection of particles from the surface of a solid and differ markedly from the data on the potential determined from the scattering of particles in the gas phase. Keywords: energy spectra, angular distribution, interatomic interaction potentials, electronic stopping, straggling.
  1. M.T. Robinson, I.M. Torrens. Phys. Rev. B, 9 (12), 5008 (1974). DOI: 10.1103/PhysRevB.9.5008
  2. V.M. Kivilis, E.S. Parilis, N.Yu. Turaev. DAN, 173 (4), 805 (1967)
  3. V.E. Yurasova, V.I. Shulga, D.S. Karpuzov. Can. J. Phys., 46 (6), 759 (1968). DOI: 10.1139/p68-094
  4. E.S. Mashkova, V.A. Molchanov, Primenenie rasseyaniya ionov dlya analiza tverdykh tel (Energoatomizdat, M., 1995), 176 p
  5. W. Eckstein. Computer Simulation of Ion-Solid Interactions (Springer, Berlin 1991)
  6. J.F. Ziegler, J.P. Biersack. SRIM. Available at: http://www.srim.org
  7. Electronic source. Available at: http://www.oecd-nea.org/tools/abstract/detail/psr-0137
  8. G.E. Thomas, L.J. Beckers, J.J. Vrakking, B.R. Koning. J. Cryst. Growth, 56 (3), 557 (1982). DOI: 10.1016/0022-0248(82)90039-2
  9. M. Hautala. Phys. Rev. B, 30 (9), 5010 (1984). DOI: 10.1103/PhysRevB.30.5010
  10. I. Koponen, M. Hautala. Nucl. Instr. Meth. Phys. Res. B, 33 (1--4), 112 (1988). DOI: 10.1016/0168-583X(88)90525-3
  11. B. Bruckner, P.M. Wolf, P. Bauer, D. Primetzhofer. Nucl. Instr. Meth. Phys. Res. B, 489, 82 (2021). DOI: 10.1016/j.nimb.2020.08.005
  12. S.N. Markin, D. Primetzhofer, S. Prusa, M. Brunmayr, G. Kowarik, F. Aumayr, P. Bauer. Phys. Rev. B, 78 (19), 195122 (2008). DOI: 10.1103/PhysRevB.78.195122
  13. M. Fama, G.H. Lantschner, J.C. Eckardt, C.D. Denton, N.R. Arista. Nucl. Instr. Meth. Phys. Res. B, 164--165, 241 (2000). DOI: 10.1016/S0168-583X(99)01086-1
  14. H.H. Andersen, A. Csete, T. Ichioka, H. Knudsen, S.P. Moller, U.I. Uggerhoj. Nucl. Instr. Meth. Phys. Res. B, 194, 217 (2002). DOI: 10.1016/S0168-583X(02)00692-4
  15. D.S. Meluzova, P.Yu. Babenko, A.P. Shergin, A.N. Zinoviev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 13, 335 (2019). DOI: 10.1134/S1027451019020332
  16. H. Paul, A. Schinner. Phys. Scripta, 69, C41 (2004). DOI: 10.1238/Physica.Regular.069a00C41
  17. P. Sigmund, A. Schinner. Nucl. Instr. Meth. Phys. Res. B, 410, 78 (2017). DOI: 10.1016/j.nimb.2017.08.011
  18. D. Goebl, K. Khalal-Kouache, D. Roth, E. Steinbauer, P. Bauer. Phys. Rev. A, 88 (3), 032901 (2013). DOI: 10.1103/PhysRevA.88.032901
  19. Electronic source. NDS --- data base. Available at: https://www-nds.iaea.org
  20. R. Blume, W. Eckstein, H. Verbeek. Nucl. Instr. Meth., 168 (1--3), 57 (1980). DOI: 10.1016/0029-554X(80)91231-8
  21. K. Morita, H. Akimune, T. Suita. J. Phys. Soc. Jpn., 25 (6), 1525 (1968). DOI: 10.1143/JPSJ.25.1525
  22. C.D. Archubi, J.C. Eckardt, G.H. Lantschner, N.R. Arista. Phys. Rev. A, 73 (4), 042901 (2006). DOI: 10.1103/PhysRevA.73.042901
  23. J.E. Valdes, G. Marti nez-Tamayo, G.H. Lantschner. J.C. Eckardt, N.R. Arista. Nucl. Instr. Meth. Phys. Res. B, 73 (3), 313 (1993). DOI: 10.1016/0168-583X(93)95744-P
  24. A.N. Zinoviev, P.Yu. Babenko. Pis'ma v ZhETF, 115 (9) 603 (2022). DOI: 10.31857/S1234567822090105
  25. J.C. Eckardt, G.H. Lantschner. Nucl. Instr. Meth. Phys. Res. B, 175--177, 93 (2001). DOI: 10.1016/S0168-583X(00)00623-6
  26. E.A. Figueroa, E.D. Cantero, J.C. Eckardt, G.H. Lantschner, N.R. Arista. Phys. Rev. A, 75 (6), 064902 (2007). DOI: 10.1103/PhysRevA.75.064902
  27. C.D. Archubi, N.R. Arista. Phys. Rev. A, 96 (6), 062701 (2017). DOI: 10.1103/PhysRevA.96.062701
  28. C.C. Montanari, C.D. Archubi, D.M. Mitnik, J.E. Miraglia. Phys. Rev. A, 79 (3), 032903 (2009). DOI: 10.1103/PhysRevA.79.032903
  29. M.M. Jakas, N.E. Capuj. Nucl. Instr. Meth. Phys. Res. B, 36, 491 (1989). DOI: 10.1016/0168-583X(89)90354-6
  30. F. Besenbacher, J.U. Andersen, E. Bonderup. Nucl. Instr. Meth., 168, 1 (1980). DOI: 10.1016/0029-554X(80)91224-0
  31. S.Ya. Petrov, V.I. Afanasyev, A.D. Melnik, M.I. Mironov, A.S. Navolotsky, V.G. Nesenevich, M.P. Petrov, F.V. Chernyshev, I.V. Kedrov, E.G. Kuzmin, B.V. Lyublin, S.S. Kozlovski, A.N. Mokeev. Phys. Atom. Nucl., 80 (7), 1268 (2017). DOI: 10.1134/S1063778817070109
  32. C. Archubi, C. Denton, J.C. Eckardt, G.H. Lantschner, F. Lovey, J. Valdes, C. Parra, F. Zappa, N.R. Arista. Phys. Stat. Sol. B, 241, 2389 (2004). DOI: 10.1002/pssb.200304862
  33. J.P. Biersack, E. Steinbauer, P. Bauer. Nucl. Instr. Meth. Phys. Res. B, 61, 77 (1991). DOI: 10.1016/0168-583X(91)95564-T

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru