The temperature distribution simulation in the graphene sublimation growth zone on SiC substrate
Lebedev S. P.
1, Priobrazhenskii S. Iu.
1, Plotnikov A. V.
1, Mynbaeva M. G.
1, Lebedev A. A.
11Ioffe Institute, St. Petersburg, Russia
Email: lebedev.sergey@mail.ioffe.ru, sereyozha@yandex.ru, xdernx@gmail.com, Mgm@mail.ioffe.ru, shura.lebe@mail.ioffe.ru
The simulation results of the temperature distribution in the growth area of graphene layers obtained by the method of thermal decomposition of the silicon carbide surface substrates in setup with induction heating are presented. The heating parametrs of the setup elements are calculated using the commercial package COMSOL Multiphysics taking into account the electrical, thermal and magnetic properties of the materials from which the growth plant elements are made. A numerical estimate of the heating inhomogeneity of silicon carbide plates over its area during the growth of graphene layers at a given temperature is given. It is shown that the lateral temperature distribution over the area of the plate has radial symmetry with decreasing values towards the center. Keywords: graphene, silicon carbide, simulation, temperature distribution, sublimation growth.
- H. Matsunami, 12th International Symposium on Power Semiconductor Devices \& ICs. Proceedings (Cat. N 00CH37094), 2000, p. 3-9, DOI: 10.1109/ISPSD.2000. 856762
- S. Castelletto, A. Peruzzo, C. Bonato, B.C. Johnson, M. Radulaski, H. Ou, F. Kaiser, J. Wrachtrup. ACS Photonics, 9 (5), 1434 (2022). DOI: 10.1021/acsphotonics.1c01775
- A.A. Lebedev, V.Yu. Davydov, D.Yu. Usachov, S.P. Lebedev, A.N. Smirnov, I.A. Eliseyev, M.S. Dunaevskiy, E.V. Gushchina, K.A. Bokai, J. Pezold. Semiconductors, 52 (14), 1882 (2018)
- J.C. Zhang, L. Lin, K.C. Jia, L.Z. Sun, H.L. Peng, Z.F. Liu. Adv. Mater., 32, 1903266 (2020). DOI: 10.1002/adma.201903266
- S.Y. Karpov, Y.N. Makarov, M.S. Ramm. Phys. Status Solidi B, 202 (1), 201 (1997). DOI: 10.1002/1521-3951(199707)202:1<201::AID-PSSB201>3.0.CO;2-T
- Y.E. Egorov, A.O. Galyukov, S.G. Gurevich, Y.N. Makarov, E.N. Mokhov, M.G. Ramm, M.S. Ramm, A.D. Roenkov, A.S. Segal, Y.A. Vodakov, A.N. Vorob'ev, A.I. Zhmakin. Mater. Sci. Forum, 264--268, 61 (1998). DOI: 10.4028/www.scientific.net/MSF.264-268.61
- M.S. Ramm, E.N. Mokhov, S.E. Demina, M.G. Ramm, A.D. Roenkov, Yu.A. Vodakov, A.S. Segal, A.N. Vorob'ev, S.Y. Karpov, A.V. Kulik, Yu.N. Makarov. Mater. Sci. Eng. B, 61--62, 107 (1999). DOI: 10.1016/S0921-5107(9800456-5)
- M. Selder, L. Kadinski, Yu. Makarov, F. Durst, P. Wellmann, T. Straubinger, D. Hofmann, S. Karpov, M. Ramm. J. Cryst. Growth, 211, 333 (2000). DOI: 10.1016/S00220248(99)00853-2
- M.T. Ha, S.M. Jeong J. Korean Ceram. Soc., 59 (2), 153 (2022). DOI:10.1007/s43207-022-00188-y
- M. Horii, N. Takahashi, T. Narita. IEEE Transactions on Magnetics, 36 (4), 1085 (2000), DOI: 10.1109/20.877629
- M. Streblau. TEM J., 3 (2), 162 (2014)
- S.P. Lebedev, D.G. Amel'chuk, I.A. Eliseyev, I.P. Nikitina, P.A. Dementev, A.V. Zubov, A.A. Lebedev. Fullerenes, Nanotubes and Carbon Nanostructures, 28 (4), 321 (2020). DOI: 10.1080/1536383X.2019.1697684
- E. Lahderanta, A.A. Lebedev, M.A. Shakhov, V.N. Stamov, K.G. Lisunov, S.P. Lebedev. J. Phys.: Condens. Matter., 32 (11), 115704 (2020). DOI: 10.1088/1361-648X/ab5bb6
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.