Study of functional characteristics of mesoporous electrodes of supercapacitors based on silicon-carbon films
Bogush I. Yu. 1, Plugotarenko N. K. 1, Myasoedova T. N. 1
1Institute of Nanotechnologies, Electronics and Equipment Engineering, Southern Federal University, Taganrog, Russia
Email: inlys@sfedu.ru, plugotarenkonk@sfedu.ru, tnmyasoedova@sfedu.ru

PDF
The study of the supercapacitor electrodes based on silicon-carbon films obtained by electrochemical deposition from solutions with different ratios of methanol/hexamethyldisilane and addition of manganese and nickel salts was carried out using cyclic voltammetry, electrochemical impedance spectroscopy and impedance Nyquist plots simulation by equivalent circuits method. The predominance of mesopores in the electrode samples was confirmed by the functional density method. According to a scanning electron microscopy study, the surface morphology of the silicon-carbon films is highly developed due to the presence of three-dimensional agglomerates and "foliated" structures. The best retention of specific capacity after 450 charge/discharge cycles is observed for electrode samples containing manganese and nickel. Simulation of equivalent circuits showed that all types of electrodes have hierarchical pore structure. Ffter 450 charge/discharge cycles an increase in pore storage resistance and a decrease in transport pore resistance due to the activation of deeper pore levels is observed. The applicability of Peukert's law for the electrodes based on silicon-carbon films for prediction of electrode discharge time is shown. Keywords: Porous electrodes, silicon-carbon films, electrochemical impedance spectroscopy, equivalent circuit models, Peukert's law.
  1. M.J. Chen, J.Y. Wang, H.J. Tang, Y. Yang, B. Wang, H.J. Zhao, D. Wang. Inorg. Chem. Front., 3, 1065 (2016). DOI: 10.1039/C6QI00083E
  2. J. Li, G. Zhang, C. Fu, L. Deng, R. Sun, C.-P. Wong. J. Power Sources, 345, 146 (2017)
  3. K. Parida, V. Bhavanasi, V. Kumar, J. Wang, P.S. Lee. J. Power Sources, 342, 70 (2017)
  4. X.X. Zhao, R.B. Yu, H.J. Tang, D. Mao, J. Qi, B. Wang, Yu Zhang, H. Zhao, W. Hu, D. Wang. Adv. Mater., 29, 1700550 (2017). DOI: 10.1002/adma.201700550
  5. H. Zhuang, N. Yang, L. Zhang, R. Fuchs, X. Jiang. ACS Appl. Mater. Interfaces, 7 (20), 10886 (2015). DOI: 10.1021/acsami.5b02024
  6. D.K. Basa, G. Ambrosone, U. Coscia, A. Setaro. Appl. Surf. Sci., 255, 5528 (2009). DOI: 10.1016/j.apsusc.2008.09.042
  7. T. Qin, Z. Wan, Z. Wang, Y. Wen, M. Liu, S. Peng, D. He, J. Hou, F. Huang, G. Cao. J. Power Sources, 336, 455 (2016). DOI: 10.1016/j.jpowsour.2016.11.003
  8. D.-H. Liu, W.-H. Li, H.-J. Liang, H.-Y. Lu, J.-Z. Guo, J. Wang, X.-L. Wu. J. Mater. Chem. A, 6, 15797 (2018)
  9. P. Zhou, L. Chen, M. Zhang, Q. Huang, C. Cui, X. Li, L. Wang, L. Li, C. Yang, Y. Li. J. Alloys Compd., 797, 826 (2019)
  10. Y. Zhao, W. Kang, L. Li, G. Yan, X. Wang, X. Zhuang, B. Cheng. Electrochim. Acta., 207, 257 (2016). DOI: 10.1016/j.electacta.2016.05.003
  11. C.B. Amara, H. Hammami, S. Fakhfakh, A. Kallel. J. Electron. Mater., 50 (10), 5915 (2021). DOI: 10.1007/s11664-021-09129-7
  12. F. Naseri, S. Karimi, E. Farjah, E. Schaltz. Renew. Sust. Energ. Rev., 155, 111913 (2022). DOI: 10.1016/j.rser.2021.111913
  13. X.B. Yan, B.K. Tay, G. Chen, S.R. Electrochem. Commun., 8 (5), 734 (2006)
  14. H. Zhuang, N. Yang, L. Zhang, R. Fuchs, X. Jiang. Appl. Mater. Int., 7 (20), 10886 (2015)
  15. C.-H. Chang, B. Hsia, J.P. Alper, S. Wang, L.E. Luna, C. Carraro, S.-Y. Lu, R. Maboudian. ACS Appl. Mater. Int., 7 (48), 26658 (2015)
  16. X.-Z. Ding, B.K. Tay, S.P. Lau, P. Zhang, X.T. Zeng. ARC Thin Solid Films, 408 (1-2), 183 (2002)
  17. D. Gruet, B. Delobel, D. Sicsic, I.T. Lucas, V. Vivier. Electrochim. Acta, 295, 787 (2019). DOI: 10.1016/j.electacta.2018.10.115
  18. Q.-A. Huang, Yu Li, K.-Ch. Tsay, Ch. Sun, Ch. Yang, L. Zhang, J. Zhang. J. Power Sources, 400, 69 (2018). DOI: 10.1016/j.jpowsour.2018.07.108
  19. M.-L. Tremblay, M.H. Martin, C. Lebouin, A. Lasia, D. Guay. Electrochim. Acta, 55 (21), 6283 (2010). DOI: 10.1016/j.electacta.2009.11.006
  20. I.A. Markevich, G.E. Selyutin, N.A. Drokin. Tech. Phys., 64 (9), 1324 (2019). DOI: 10.1134/S1063784219090093
  21. A.A. Nechitailov, N.V. Glebova, A.A. Tomasov, A. Krasnova, N.K. Zelenina. Tech. Phys., 64 (6), 839 (2019). DOI: 10.1134/S1063784219060136
  22. N.K. Plugotarenko, T.N. Myasoedova, I.Y. Bogush. Mater. Sci. Semicond. Process., 135, 106121 (2021). DOI: 10.1016/j.mssp.2021.106121
  23. T.N. Myasoedova, M.N. Grigoryev, T.S. Mikhailova. J. Alloys. Compounds, 855 (2), 157504 (2021). DOI: 10.1016/j.jallcom.2020.157504
  24. P.S. Fernandez, A. Arenillas, E.G. Calvo, J.A. Menendez, M.E. Martins. Int. J. Hydrogen Energy, 37|,(13), 10249 (2012). DOI: 10.1016/j.ijhydene.2012.01.154
  25. E.H. Lahrar, P. Simon, C. Merlet. The J. Chem. Ph., 155 (18), 184703 (2021). DOI: 10.1063/5.0065150
  26. M.N. Grigoryev, T.N. Myasoedova, T.S. Mikhailova. J. Phys. Conf. Ser., 112 4, 081043 (2018). DOI: 10.1088/1742-6596/1124/8/081043
  27. N.K. Plugotarenko, T.N. Myasoedova, M.N. Grigoryev, T.S. Mikhailova. Nanomaterials, 9 (12), 1754 (2019). DOI: 10.3390/nano9121754
  28. F. Stoeckli, T.A. Centeno. J. Mater. Chem. A, 1, 6865 (2013). DOI: 10.1039/c3ta10906b
  29. M.S. Javed, S. Shoaib, Ahmad Shah, S. Hussain, Sh. Tan, W. Mai. Chem. Eng. J., 382, 122814 (2020). DOI: 10.1016/j.cej.2019.122814
  30. X. Zhang, X. Zhang, X. Sun, Y. An, Sh. Song, Ch. Li, K. Wang, F. Su, Ch.-M. Chen, F. Liu, Zh.Sh. Wu, Y. Ma. J. Power Sources, 488, 229454 (2021). DOI: 10.1016/j.jpowsour.2021.229454
  31. R.K. Kalluri, M.M. Biener, M.E. Suss, M.D. Merrill, M. Stadermann, J.G. Santiago, T.F. Baumann, J. Biener, A. Striolo. Chem. Phys., 15, 2309 (2013). DOI: 10.1039/C2CP43361C
  32. J. Jagiello, A. Chojnacka, S.E.M. Pourhosseini, Z. Wang, F. Beguin. Carbon, 178, 113 (2021). DOI: 10.1016/j.carbon.2021.02.098
  33. T.-Yu. Yi, Ch.-W. Tai, Ch.-Ch. Hu. J. Power Sources, 501, 230029 (2021). DOI: 10.1016/j.jpowsour.2021.230029
  34. M.D. Stoller, R.S. Ruoff. Energy Environ. Sci., 9, 1294 (2010). DOI: 10.1039/C0EE00074D
  35. M.S. Javed, S. Shoaib Ahmad Shah, Sh. Hussain, Sh. Tan, W. Mai. Chem. Eng. J., 382, 122814 (2020). DOI: 10.1016/j.cej.2019.122814
  36. D. Cericola, M.E. Spahr. Electrochim. Acta, 191, 558 (2016). DOI: 10.1016/j.electacta.2016.01.121
  37. N. Devillers, S. Jemei, M.C. Pera, D. Bienaime, F. Gustin. J. Power Sources, 246, 596 (2014).
  38. M.E. Suss, Th.F. Baumann, M.A. Worsley, K.A. Rose, Th.F. Jaramillo, M. Stadermann, J.G. Santiago. J. Power Sources, 241, 266 (2013). DOI: 10.1016/j.jpowsour.2013.03.178
  39. J. Kang, J. Wen, Sh.H. Jayaram, A. Yu, X. Wang. Electrochim. Acta, 115, 587 (2014). DOI: 10.1016/j.electacta.2013.11.002
  40. J. Kowal, E. Avaroglu, F. Chamekh, A. vSenfelds, T. Thien, D. Wijaya, D.U. Sauer. J. Power Sources, 196 (1), 573 (2011). DOI: 10.1016/j.jpowsour.2009.12.028

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru