Preferential sputtering of alloys by gas cluster ions
Chernysh V. S. 1, Ieshkin A. E. 1, Kireev D. S.1, Minnebaev D. K.1, Skryleva E. A. 2, Senatulin B. R.2
1Lomonosov Moscow State University, Moscow, Russia
2National University of Science and Technology MISiS, Moscow, Russia
Email: ieshkin@physics.msu.ru

PDF
Topography and composition of the surface of nickel-based alloys under irradiation with Ar2500+ cluster ions with the energy of 20 keV, and atomic Ar+ ions with the energy of 3 keV have been studied. It has been experimentally found that the surface of the alloys is depleted by a component with a lower binding energy. It is shown that the change in the surface concentrations of the alloy components upon irradiation with cluster ions is an order of magnitude greater than upon sputtering with atomic ions. The degree of change in the surface composition is determined by the ratio of the sputtering yields of the alloy components. Keywords: gas cluster ions, ion sputtering, XPS, preferential sputtering, surface topography.
  1. I. Yamada. Appl. Surf. Sci., 310, 77 (2014). DOI: 10.1016/j.apsusc.2014.03.147
  2. A.E. Ieshkin, A.B. Tolstoguzov, N.G. Korobeishchikov, V.O. Pelenovich, V.S. Chernysh. Phys. Usp., 65 (7) (2022). DOI: 10.3367/UFNe.2021.06.038994
  3. A. Ieshkin, D. Kireev, V. Chernysh, A. Molchanov, A. Serebryakov, M. Chirkin. Surf. Topogr. Metrol. Prop., 7, 025016 (2019). DOI: 10.1088/2051-672X/ab1f49
  4. N.G. Korobeishchikov, I.V. Nikolaev, M.A. Roenko. Tech. Phys. Lett., 45 (3), 274 (2019). DOI: 10.1134/S1063785019030295
  5. V. Pelenovich, X.M. Zeng, J.B. Luo, R. Rakhimov, W.B. Zuo, X.Y. Zhang, C.X. Tian, C.W. Zou, D.J. Fu, B. Yang. Acta Phys. Sin., 70 (5), 053601 (2021). DOI: 10.7498/aps.70.20201454
  6. S.J. Lee, A. Hong, J. Cho, C.M. Choi, J.Y. Baek, J.Y. Eo, B.J. Cha, W.J. Byeon, J.Y. We, S. Hyun, M. Jeon, C. Jeon, D.J. Ku, M.C. Choi. Appl. Surf. Sci., 572, 151467 (2022). DOI: 10.1016/j.apsusc.2021.151467
  7. A. Delcorte, V. Delmez, C. Dupont-Gillain, C. Lauzin, H. Jefford, M. Chundak, C. Poleunis, K. Moshkunov. Phys. Chem. Chem. Phys., 22, 17427 (2020). DOI: 10.1039/d0cp02398a
  8. E.A. Skryleva, B.R. Senatulin, D.A. Kiselev, T.S. Ilina, D.A. Podgorny, Yu.N. Parkhomenko. Surf. Interfaces, 26, 101428 (2021). DOI: 10.1016/j.surfin.2021.101428
  9. O. Romanyuk, I. Gordeev, A. Paszuk, O. Supplie, J.P. Stoeckmann, J. Houdkova, E. Ukraintsev, I. Bartov s, P. Jiv r cek, T. Hannappel. Appl. Surf. Sci., 514, 145903 (2020). DOI: 10.1016/j.apsusc.2020.145903
  10. V.N. Popok, J. Samela, K. Nordlund, V.P. Popov. Phys. Rev. B, 85, 033405 (2012). DOI: 10.1103/PhysRevB.85.033405
  11. D. Maciazek, M. Kanski, Z. Postawa. Anal. Chem., 92, 7349 (2020). DOI: 10.1021/acs.analchem.0c01219
  12. R. Simpson, R.G. White, J.F. Watts, M.A. Baker. Appl. Surf. Sci., 405, 79 (2017). DOI: 10.1016/j.apsusc.2017.02.006
  13. P. Mack. https://assets.thermofisher.com/TFS-Assets/MSD/ Scientific-Resources/ Monatomic-Cluster-Argon-Ion-XPS-Presentation.pdf
  14. D.F. Yancey, C. Reinhardt. J. Electron. Spectros. Relat. Phenomena, 231, 104 (2019). DOI: 10.1016/j.elspec.2018.01.005 0368-2048
  15. A.J. Barlow, N. Sano, B.J. Murdoch, J.F. Portoles, P.J. Pigram, P.J. Cumpson. Appl. Surf. Sci., 459, 678 (2018). DOI: 10.1016/j.apsusc.2018.07.195
  16. A.E. Ieshkin, D.S. Kireev, A.A. Tatarintsev, V.S. Chernysh, B.R. Senatulin, E.A. Skryleva. Surf. Sci., 700, 121637 (2020). DOI: 10.1016/j.susc.2020.121637
  17. V.S. Chernysh, H.H. Brongersma, P. Bruner, T. Grehl. Nucl. Instrum. Meth. B, 460, 180 (2019). DOI: 10.1016/j.nimb.2019.02.008
  18. E. Gillam. J. Phys. Chem. Solids, 11, 55 (1959)
  19. L.E. Rehn, S. Danyluk, H. Wiedersich. Phys. Rev. Lett., 43, 1437 (1979). DOI: 10.1103/PhysRevLett.43.1437
  20. N.Q. Lam, G.K. Leaf, H. Wiedersich. J. Nucl. Mater., 88, 289 (1980). DOI: 10.1016/0022-3115(80)90285-8
  21. N.Q. Lam, H. Wiedersich. J. Nucl. Mater., 103, 433 (1981). DOI: 10.1016/0022-3115(82)90637-7
  22. H.H. Andersen, J. Chevalier, V. Chernysh. Nucl. Instrum. Meth., 191, 241 (1981). DOI: 10.1016/0029-554X(81)91010-7
  23. H.H. Andersen, V. Chernysh, B. Stenum, T. Sorensen, H.J. Whitlow. Surf. Sci., 123, 39 (1982). DOI: 10.1016/0039-6028(82)90127-3
  24. P. Sigmund, A. Oliva, G. Falcone, Nucl. Instrum. Meth., 194, 541 (1982). DOI: 10.1016/0029-554X(82)90578-X
  25. R. Kelly, Surf. Interf. Anal., 7, 1 (1985). DOI: 10.1002/sia.740070102
  26. H.H. Andersen, B. Stenum, T. Sorensen, H.J. Whitlow. Nucl. Instrum. Meth., 209--210, 487 (1983). DOI: 10.1016/0167-5087(83)90843-8
  27. R. Kelly, A. Oliva. Nucl. Instr. Meth. B, 13, 283 (1986). DOI: 10.1016/0168-583X(86)90515-X
  28. D.M. Gruen, A.R. Krauss, S. Susman, M. Venugopalan, M. Ron. J. Vac. Sci. Tech. A, 1, 924 (1983). DOI: 10.1116/1.572152
  29. P. Sigmund. Nucl. Instrum. Meth. B, 27, 1 (1987). DOI: 10.1016/0168-583X(87)90004-8
  30. R. Kelly. In: Proc. Symposium on Sputtering, ed. by P. Varga, G. Betz, F.P. Viehbjck, (Vienna, 1980)
  31. N.Q. Lam, H. Wiedersich. Rad. Eff. Lett., 67, 107 (1982). DOI: 10.1080/01422448208226866
  32. R. Behrisch (Ed.) Sputtering by Particle Bombardment I. Topics in Applied Physics (Springer-Verlag, Berlin-Heidelberg-NY., 1981), v. 47. DOI: 10.1007/3-540-10521-2
  33. M. Shikata, R. Shimizu. Surf. Sci., 97, L363 (1980). DOI: 10.1016/0039-6028(80)90664-0
  34. H.V. Pickering. J. Vac. Sci. Tech., 13, 618 (1976). DOI: 10.1116/1.569045
  35. V.S. Chernysh, A.E. Ieshkin, D.S. Kireev, A.V. Nazarov, A.D. Zavilgelsky. Surf. Coat. Tech., 388, 125608 (2020). DOI: 10.1016/j.surfcoat.2020.125608
  36. N. Toyoda, H. Kitani, N. Hagiwara, T. Aoki, J. Matsuo, I. Yamada. Mater. Chem. Phys., 54, 262 (1998). DOI: 10.1016/S0254-0584(98)00101-1
  37. A.E. Ieshkin, Yu.A. Ermakov, V.S. Chernys. Nucl. Instrum. Meth. B, 354, 226 (2015). DOI: 10.1016/j.nimb.2014.11.065
  38. M. Benguerba, Nucl. Instrum. Meth. B, 420, 27 (2018). DOI: 10.1016/j.nimb.2018.01.030
  39. J. Matsuo, N. Toyoda, M. Akizuki, I. Yamada. Nucl. Instrum. Meth. B, 121, 459 (1997). DOI: 10.1016/S0168-583X(96)00541-1
  40. P. Sigmund. Nucl. Instrum. Meth. B, 406, 391 (2017). DOI: 10.1016/j.nimb.2016.12.004
  41. J.B. Malherbe, W.O. Barnard. Surf. Sci., 255, 309 (1991). DOI: 10.1016/0039-6028(91)90688-O
  42. M.P. Seah, T.S. Nunney. J. Phys. D, 43, 253001 (2010). DOI: 10.1088/0022-3727/43/25/253001
  43. Y. Yamamura, H. Tawara. At. Data Nucl. Data Tables, 62, 149 (1996). DOI: 10.1006/adnd.1996.0005

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru