Structure and stability of composite gels based on collagen and carboxymethylcellulose
Nashchekina Y.А.1, Konson V.A.1, Sirotkina M.Y.1, Nashchekin А.V.
1Institute of Cytology Russian Academy of Science, Saint-Petersburg, Russia
Email: nashchekina.yu@mail.ru

PDF
The creation of biocompatible gels, based on type I collagen is studied. To improve the mechanical properties, 10-30% carboxymethylcellulose (CMC) was added to the collagen gel. It is shown that with an increase in the CMC content up to 30%, the stability of composite gels increases. With the help of scanning electron microscopy it is shown, that the ability of collagen to form native fibrils decreases with the addition of CMC. It was also shown by electrophoresis that the presence of CMC increases the rate of degradation of the composite collagen gel. Keywords: type I collagen, carboxymethylcellulose, composite collagen gels, degradation.
  1. A. Cipitria, M. Salmeron-Sanchez. Adv Healthc Mater., 6 (15), 1700052 (2017). DOI: 10.1002/adhm.201700052
  2. K. Gelse, E. Poschl, T. Aigner. Adv. Drug. Deliv Rev., 12 (55), 1531 (2003). DOI: 10.1016/j.addr.2003.08.002
  3. F. Ruedinger, A. Lavrentieva, C. Blume, I. Pepelanova, T. Scheper. Appl. Microbiol. Biotechnol., 2 (99), 623 (2015). DOI: 10.1007/s00253-014-6253-y
  4. J.L. Drury, D.J. Mooney. Biomaterials, 24 (24), 4337 (2003). DOI: 10.1016/s0142-9612(03)00340-5
  5. R.S. Ashton, A. Banerjee, S. Punyani, D.V. Schaffer, R.S. Kane. Biomaterials, 36 (28), 5518 (2007). DOI: 10.1016/j.biomaterials.2007.08.038
  6. M.W. Tibbitt, K.S. Anseth. Biotechnol Bioeng., 4 (103), 655 (2009). DOI: 10.1002/bit.22361
  7. D. Fan, U. Staufer, A. Accardo. Bioengineering (Basel), 4 (6), 113 (2019). DOI: 10.3390/bioengineering6040113
  8. K. Gelse, E. Poschl, T. Aigner. Adv. Drug Deliv Rev., 12 (55), 1531 (2003). DOI: 10.1016/j.addr.2003.08.002
  9. L. Salvatore, N. Gallo, M.L. Natali, A. Terzi, A. Sannino, M. Madaghiele. Front Bioeng. Biotechnol., 9, 644595 (2021). DOI: 10.3389/fbioe.2021.644595
  10. C. Somaiah, A. Kumar, D. Mawrie, A. Sharma, S.D. Patil, J. Bhattacharyya, R. Swaminathan, B.G. Jaganathan. PLoS ONE, 12 (10), 1 (2015). DOI: 10.1371/journal.pone.0145068
  11. P. Gillery, F.X. Maquart, J.P. Borel. Exp. Cell. Res., 1 (167), 29 (1986). DOI: 10.1016/0014-4827(86)90201-6
  12. K. Adamiak, A. Sionkowska. Int. J. Biol. Macromol., 161, 550 (2020). DOI: 10.1016/j.ijbiomac.2020.06.075
  13. G.D. Nicodemus, S.J. Bryant. Tissue Eng. Part B Rev., 2 (14), 149 (2008). DOI: 10.1089/ten.teb.2007.0332
  14. E.D. Abdolahinia, B. Jafari, S. Parvizpour, J. Barar, S. Nadri, Y. Omidi. BioImpacts, 2 (11), 111 (2021). DOI: 10.34172/bi.2021.18
  15. M. Zhang, C. Ding, J. Yang, S. Lin, L. Chen, L. Huang. Carbohydr Polym., 137, 410 (2016). DOI: 10.1016/j.carbpol.2015.10.098
  16. C. Ding, R. Shi, Z. Zheng, M. Zhang. Connect Tissue Res., 1 (59), 66 (2018). DOI: 10.1080/03008207.2017.1306059
  17. C.K. Bektas, I. Kimiz, A. Sendemir, V. Hasirci., N. Hasirci. J. Biomater. Sci. Polym. Ed., 14 (29), 1764 (2018). DOI: 10.1080/09205063.2018.1498718
  18. Y. Wang, K. Kanie, T. Takezawa, M. Horikawa, K. Kaneko, A. Sugimoto, A. Yamawaki-Ogata, Y. Narita, R. Kato. Carbohydr Polym., 285, 119223 (2022). DOI: 10.1016/j.carbpol.2022.119223
  19. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall. J. Biol. Chem., 1 (193), 265 (1951)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru