Grevtseva I.G.1, Ovchinnikov O.V. 1, Smirnov M.S. 1, Kondratenko T.S.1, Derepko V.N. 1, Hussein A.M.Kh. 1, Egorov N.E. 1, Vozgorkova E.A. 1
1Voronezh State University, Voronezh, Russia
Email: grevtseva_ig@inbox.ru
The paper presents regularities that demonstrate the effect of passivating ligands formation of thioglycolic acid and L-cysteine (TGA, L-Cys) and dielectric shells (SiO2) on Ag2S nanocrystals interface on the photostability of their IR luminescence. Using FTIR absorption spectroscopy, the interaction manifestations of passivating ligands molecules of TGA and L-Cys with Ag2S nanocrystals, as well as the formation of SiO2 shell due to the process of replacing organic ligands with a silica ligand (MPTMS) ("ligand exchange"), were found. In the case of replacing TGA with MPTMS, an increase in the luminescence quantum yield of Ag2S quantum dots (QDs) and its resistance to long-term exposure to exciting radiation was found. In the case of replacing L-Cys with MPTMS, the formation of a fragmentary SiO2/L-Cys shell on Ag2S nanocrystals was observed due to the partial replacement of L-Cys with MPTMS, which contributes to the reverse photodegradation of KT Ag2S luminescence of as a result of SiO2/L-Cys shell photodestruction. Keywords: photoluminescence, luminescence photostability, quantum yield, quantum dot, core/shell structures, FTIR spectroscopy.
- M.A. Cotta. ACS Appl. Nano Mater., 3 (6), 4920 (2020). DOI: 10.1021/acsanm.0c01386
- S.B. Hafiz, M. Scimeca, A. Sahu, D.-K. Ko. Nano Convergence, 6, 7 (2019). DOI: 10.1186/s40580-019-0178-1
- F. Boschi, F. Sanctis // Eur. J. Histochem., 61 (3), 2830 (2017). DOI: 10.4081/ejh.2017.2830
- Ph. Reineck, M. Torelli. Material Matters, 14 (2), 57 (2019)
- V. Caponetti, J.W. Trzcinski, A. Cantelli, R. Tavano,E. Papini,F. Mancin,M. Montalti. Front. Chem., 7, 168 (2019). DOI: 10.3389/fchem.2019.00168
- O.S. Wolfbeis. Chem. Soc. Rev., 44, 4743 (2015). DOI: 10.1039/C4CS00392F
- A.P. Litvin, I.V. Martynenko, F. Purcell-Milton, A.V. Baranov, A.V. Fedorov, Y.K. Gun'ko. J. Mater. Chem. A, 5, 13252 (2017). DOI: 10.1039/C7TA02076G
- Z. Wang,N. Zhang,L. Kimber, K.L. Brenneman,T.-C. Wu, H.-C. Jung, S. Biswas, B. Sen, K. Reinhardt, S. Liao, M. Stroscio, M. Dutta. Quantum Dot Devices, 1st ed (Springer New York, NY, 2012). DOI: 10.1007/978-1-4614-3570-9_15
- M. Chen,L. Lu,H. Yu,C. Li,N. Zhao. Advanced Science, 8 (18), 182101560 (2021). DOI: 10.1002/advs.202101560
- L. Colace, A. Iacovo, C. Venettacci. Colloidal quantum dots for optoelectronic applications: Fundamentals and recent progress.In: 20th Italian National Conference on Photonic Technologies (Fotonica 2018) (IET, 2018), p. 1. DOI: 10.1049/cp.2018.1626
- Y. Miao,P. Yang,J. Zhao,Y. Du,H. He,Y. Liu. J. Nanoscience and Nanotechnology, 15 (6), 4462-9 (2015). DOI: 10.1166/jnn.2015.9800
- A.S. Tsipotan, M.A. Gerasimova, S.P. Polyutov, A.S. Aleksandrovsky, V.V. Slabko. J. Phys. Chem. B, 121 (23), 5876 (2017). DOI: 10.1021/acs.jpcb.7b03166
- A. Kumari, R.R. Singh. Physica E: Low-dimensional Systems and Nanostructures, 89, 77 (2017). DOI: 10.1016/j.physe.2017.01.031
- Q.F. Ma, J.Y. Chen, P.N. Wang, Y. Yue, N. Dai. J. Lumin., 131 (1), 2267 (2011). DOI: 10.1016/j.jlumin.2011.05.055
- J. Ma, J.Y. Chen, Y. Zhang, P.N. Wang, J. Guo, W.-L. Yang, C.-C. Wang. J. Phys. Chem. B, 111 (41), 12012 (2007). DOI: 10.1021/jp073351+
- T. Wang, X. Jiang. ACS Appl. Mater. Interfaces, 5 (4), 1190 (2013). DOI: 10.1021/am302234z
- M. Bhati, S.A. Ivanov,T.P. Senftle,S. Tretiak, D. Ghosh. J. Mater. Chem. A, 10, 5212 (2022). DOI: 10.1039/D1TA07983B
- H.H.-Y. Wei,C.M. Evans, B.D. Swartz, A.J. Neukirch, J. Young, O.V. Prezhdo, T.D. Krauss. Nano Lett., 12, 4465 (2012). DOI: 10.1021/nl3012962
- A. Kurzmann, A. Ludwig, A.D. Wieck, A. Lorke, M. Geller. Nano Lett., 16, 3367 (2016). DOI: 10.1021/acs.nanolett.6b01082
- Y. Zeng, D.F. Kelley. ACS Nano, 9 (10), 10471 (2015). DOI: 10.1021/acsnano.5b04710
- M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva, A.I. Zvyagin, A.S. Perepelitsa, R.A. Ganeev. Opt. Spectrosc., 124 (5), 681 (2018). DOI: 10.1134/S0030400X18050211
- O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, T.S. Kondratenko, A.S. Perepelitsa, S.V. Aslanov, V.U. Khokhlov, E.P. Tatyanina, A.S. Matsukovich. Optical and Quantum Electronics, 52 (4), 198 (2020). DOI: 10.1007/s11082-020-02314-8
- O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, T.S. Kondratenko. J. Lumin., 207, 626 (2019). DOI: 10.1016/j.jlumin.2018.12.019
- T. Kondratenko, O. Ovchinnikov, I. Grevtseva, M. Smirnov, O. Erina, V. Khokhlov, B. Darinsky, E. Tatianina. Materials, 13 (4), 909 (2020). DOI: 10.3390/ma13040909
- I.G. Grevtseva, S.V. Aslanov. Bulletin of the Russian Academy of Sciences: Physics, 84 (5), 517 (2020). DOI: 10.3103/s1062873820050111
- O.V. Ovchinnikov, T.S. Kondratenko, I.G. Grevtseva, M.S. Smirnov, S.I. Pokutnyi. J. Nanophotonics, 10 (3), 033505 (2016). DOI: 10.1117/1.JNP.10.033505
- O.V. Ovchinnikov, M.S. Smirnov, T.S. Kondratenko, S.A. Ambrosevich, M.T. Metlin, I.G. Grevtseva, A.S. Perepelitsa. J. Nanoparticle Research, 19 (12), 403 (2017). DOI: 10.1007/s11051-017-4093-2
- O.V. Ovchinnikov, A.S. Perepelitsa, M.S. Smirnov, A.N. Latyshev, I.G. Grevtseva, G.N. Goltsman, R.B. Vasiliev, A.G. Vitukhnovsky. J. Lumin., 220, 117008 (2020). DOI: 10.1016/j.jlumin.2019.117008
- V.A. Krivenkov, P.S. Samokhvalov, P.A. Linkov, D.O. Solovyeva, G.E. Kotkovskii, A.A. Chistyakov, I. Nabiev. In: Proceedings Volume 9126, Nanophotonics V, 91263N (2014). DOI: 10.1117/12.2057828
- D.L. Nida,N. Nitin,W.W. Yu, V. L. Colvin,R. Richards-Kortum. Nanotechnology, 19 (3), 035701 (2008). DOI: 10.1088/0957-4484/19/03/035701
- Y. Sun, F. Song, C. Qian, K. Peng, S. Sun, Y. Zhao, Z. Bai, J. Tang, S. Wu, H. Ali, F. Bo, H. Zhong, K. Jin, X. Xu. ACS Photonics, 4, 369 (2017). DOI: 10.1021/acsphotonics.6b00843
- E.V. Klyachkovskaya, S.V. Vashchenko, A.P. Stupak, S.V. Gaponenko. J. Appl. Spectrosc., 77, 793 (2010). DOI: 10.1007/s10812-010-9395-4
- K.V. Vokhmintcev, C. Guhrenz, N. Gaponik, I. Nabiev, P.S. Samokhvalov. J. Phys. Conf. Ser., 784, 012014 (2017). DOI: 10.1088/1742-6596/784/1/012014
- D. Vasudevan, R.R. Gaddam, A. Trinchi, I. Cole. J. Alloys and Compounds, 636, 395 (2015). DOI: 10.1016/j.jallcom.2015.02.102
- J. Kim, D. Hwang, H. Jung, K. Kim, X.-H. Pham, S.-H. Lee, J. Byun, W. Kim, H.-M. Kim, E. Hahm, K.-m. Ham, W.-Y. Rho, D. Lee, B.-H. Jun. J. Nanobiotechnol., 20, 22 (2022). DOI: 10.1186/s12951-021-01227-2
- M.S. Smirnov, O.V. Buganov, S.A. Tikhomirov, O.V. Ovchinnikov, E.V. Shabunya-Klyachkovskaya, I.G. Grevtseva, T.S. Kondratenko. J. Nanoparticle Research, 19, 376 (2017). DOI: 10.1007/s11051-017-4067-4
- K.D. Wegner, F. Dussert, D. Truffier-Boutry, A. Benayad, D. Beal, L. Mattera, W.L. Ling, M. Carriere, P. Reiss. Front. Chem., 27 (7), 466 (2019). DOI: 10.3389/fchem.2019.00466
- A.S. Perepelitsa, O.V. Ovchinnikov, M.S. Smirnov, T.S. Kondratenko, I.G. Grevtseva, S.V. Aslanov, V.Y. Khokhlov. J. Lumin., 231, 117805 (2021). DOI: 10.1016/j.jlumin.2020.117805
- I. Piwonski, J. Grobelny, M. Cichomski, G. Celichowski, J. Rogowski. Applied Surface Science, 242 (1-2), 147 (2005). DOI: 10.1016/j.apsusc.2004.08.009
- Sh. Lin, Y. Feng, X. Wen. Phys. Chem., 119, 867 (2015). DOI: 10.1021/ jp511054g
- M.S. Smirnov, O.V. Ovchinnikov. J. Lumin., 227, 117526-1-8 (2020). DOI: 10.1016/j.jlumin.2020.117526
- N. Fujimura, A. Ohta, K. Makihara, S. Miyazaki. Jpn. J. Appl. Phys., 55, 08PC06 (2016). DOI: 10.7567/JJAP.55.08PC06
- A.N. Latyshev, O.V. Ovchinnikov, S.S. Okhotnikov. J. Appl. Spectrosc., 70 (6), 817 (2003). DOI: 10.1023/B:JAPS.0000016295.19263.97
- V.M. Ievlev, A.N. Latyshev, O.V. Ovchinnikov, M.S. Smirnov, V.G. Klyuev, A.M. Kholkina, A.N. Utekhin, A.B. Evlev. Doklady Physics, 51 (8), 400 (2006). DOI: 10.1134/S1028335806080027
- O.V. Ovchinnikov, M.S. Smirnov, A.N. Latyshev, D.I. Stasel'ko. Opt. Spectrosc., 103 (3), 482 (2007)
- M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva, A.I. Zvyagin, A.S. Perepelitsa, R.A. Ganeev. Opt. Spectrosc., 124 (5), 681 (2018). DOI: 10.1134/S0030400X18050211
- A.N. Latyshev, O.V. Ovchinnikov, V.G. Klyuev, M.S. Smirnov, D.I. Stasel'ko. Opt. Spectrosc., 114 (4), 544 (2013). DOI: 10.1134/S0030400X13040115
- M.S. Smirnov, O.V. Ovchinnikov, N.A.R. Hazal, A.I. Zvyagin. Inorganic Materials, 54 (5), 413 (2018). DOI: 10.1134/S002016851805014X
- Z.T. Banizi, M. Seif. Mater. Res. Express, 4 (10), 105007 (2017). DOI: 10.1088/2053-1591/aa8a8a
- F.O. Silva, M.S. Carvalho, R. Mendon a, W.A.A. Macedo, K. Balzuweit, P. Reiss, M.A. Schiavon. Nanoscale Res. Lett., 7 (1), 536 (2012). DOI: 10.1186/1556-276X-7-536
- Ch. Chung, M. Lee. Bull. Korean Chem. Soc., 25 (10), 1461 (2004). DOI: 10.5012/bkcs.2004.25.10.1461
- K. Nakamoto. IR spectra and Raman spectra of inorganic and coordination compounds (Mir, Moscow, 1991)
- A.R. Attar, D.E. Blumling, K.L. Knappenberger. J. Chem. Phys., 134, 024514 (2011). DOI: 10.1063/1.3526746
- M.-A. Chen, X.-B. Lu, Z.-H. Guo, R. Huang. Corrosion Science, 53 (9), 2793 (2011). DOI: 10.1016/j.corsci.2011.05.010
- N. Nuryono,N.M. Rosiati, B. Rusdiarso, S.C.W. Sakti, S. Tanaka. Springerplus, 11 (3), 515 (2011). DOI: 10.1186/2193-1801-3-515
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.