Photostability of luminescence of Ag2S quantum dots and Ag2S/SiO2 core/shell structures
Grevtseva I.G.1, Ovchinnikov O.V. 1, Smirnov M.S. 1, Kondratenko T.S.1, Derepko V.N. 1, Hussein A.M.Kh. 1, Egorov N.E. 1, Vozgorkova E.A. 1
1Voronezh State University, Voronezh, Russia
Email: grevtseva_ig@inbox.ru

PDF
The paper presents regularities that demonstrate the effect of passivating ligands formation of thioglycolic acid and L-cysteine (TGA, L-Cys) and dielectric shells (SiO2) on Ag2S nanocrystals interface on the photostability of their IR luminescence. Using FTIR absorption spectroscopy, the interaction manifestations of passivating ligands molecules of TGA and L-Cys with Ag2S nanocrystals, as well as the formation of SiO2 shell due to the process of replacing organic ligands with a silica ligand (MPTMS) ("ligand exchange"), were found. In the case of replacing TGA with MPTMS, an increase in the luminescence quantum yield of Ag2S quantum dots (QDs) and its resistance to long-term exposure to exciting radiation was found. In the case of replacing L-Cys with MPTMS, the formation of a fragmentary SiO2/L-Cys shell on Ag2S nanocrystals was observed due to the partial replacement of L-Cys with MPTMS, which contributes to the reverse photodegradation of KT Ag2S luminescence of as a result of SiO2/L-Cys shell photodestruction. Keywords: photoluminescence, luminescence photostability, quantum yield, quantum dot, core/shell structures, FTIR spectroscopy.
  1. M.A. Cotta. ACS Appl. Nano Mater., 3 (6), 4920 (2020). DOI: 10.1021/acsanm.0c01386
  2. S.B. Hafiz, M. Scimeca, A. Sahu, D.-K. Ko. Nano Convergence, 6, 7 (2019). DOI: 10.1186/s40580-019-0178-1
  3. F. Boschi, F. Sanctis // Eur. J. Histochem., 61 (3), 2830 (2017). DOI: 10.4081/ejh.2017.2830
  4. Ph. Reineck, M. Torelli. Material Matters, 14 (2), 57 (2019)
  5. V. Caponetti, J.W. Trzcinski, A. Cantelli, R. Tavano,E. Papini,F. Mancin,M. Montalti. Front. Chem., 7, 168 (2019). DOI: 10.3389/fchem.2019.00168
  6. O.S. Wolfbeis. Chem. Soc. Rev., 44, 4743 (2015). DOI: 10.1039/C4CS00392F
  7. A.P. Litvin, I.V. Martynenko, F. Purcell-Milton, A.V. Baranov, A.V. Fedorov, Y.K. Gun'ko. J. Mater. Chem. A, 5, 13252 (2017). DOI: 10.1039/C7TA02076G
  8. Z. Wang,N. Zhang,L. Kimber, K.L. Brenneman,T.-C. Wu, H.-C. Jung, S. Biswas, B. Sen, K. Reinhardt, S. Liao, M. Stroscio, M. Dutta. Quantum Dot Devices, 1st ed (Springer New York, NY, 2012). DOI: 10.1007/978-1-4614-3570-9_15
  9. M. Chen,L. Lu,H. Yu,C. Li,N. Zhao. Advanced Science, 8 (18), 182101560 (2021). DOI: 10.1002/advs.202101560
  10. L. Colace, A. Iacovo, C. Venettacci. Colloidal quantum dots for optoelectronic applications: Fundamentals and recent progress.In: 20th Italian National Conference on Photonic Technologies (Fotonica 2018) (IET, 2018), p. 1. DOI: 10.1049/cp.2018.1626
  11. Y. Miao,P. Yang,J. Zhao,Y. Du,H. He,Y. Liu. J. Nanoscience and Nanotechnology, 15 (6), 4462-9 (2015). DOI: 10.1166/jnn.2015.9800
  12. A.S. Tsipotan, M.A. Gerasimova, S.P. Polyutov, A.S. Aleksandrovsky, V.V. Slabko. J. Phys. Chem. B, 121 (23), 5876 (2017). DOI: 10.1021/acs.jpcb.7b03166
  13. A. Kumari, R.R. Singh. Physica E: Low-dimensional Systems and Nanostructures, 89, 77 (2017). DOI: 10.1016/j.physe.2017.01.031
  14. Q.F. Ma, J.Y. Chen, P.N. Wang, Y. Yue, N. Dai. J. Lumin., 131 (1), 2267 (2011). DOI: 10.1016/j.jlumin.2011.05.055
  15. J. Ma, J.Y. Chen, Y. Zhang, P.N. Wang, J. Guo, W.-L. Yang, C.-C. Wang. J. Phys. Chem. B, 111 (41), 12012 (2007). DOI: 10.1021/jp073351+
  16. T. Wang, X. Jiang. ACS Appl. Mater. Interfaces, 5 (4), 1190 (2013). DOI: 10.1021/am302234z
  17. M. Bhati, S.A. Ivanov,T.P. Senftle,S. Tretiak, D. Ghosh. J. Mater. Chem. A, 10, 5212 (2022). DOI: 10.1039/D1TA07983B
  18. H.H.-Y. Wei,C.M. Evans, B.D. Swartz, A.J. Neukirch, J. Young, O.V. Prezhdo, T.D. Krauss. Nano Lett., 12, 4465 (2012). DOI: 10.1021/nl3012962
  19. A. Kurzmann, A. Ludwig, A.D. Wieck, A. Lorke, M. Geller. Nano Lett., 16, 3367 (2016). DOI: 10.1021/acs.nanolett.6b01082
  20. Y. Zeng, D.F. Kelley. ACS Nano, 9 (10), 10471 (2015). DOI: 10.1021/acsnano.5b04710
  21. M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva, A.I. Zvyagin, A.S. Perepelitsa, R.A. Ganeev. Opt. Spectrosc., 124 (5), 681 (2018). DOI: 10.1134/S0030400X18050211
  22. O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, T.S. Kondratenko, A.S. Perepelitsa, S.V. Aslanov, V.U. Khokhlov, E.P. Tatyanina, A.S. Matsukovich. Optical and Quantum Electronics, 52 (4), 198 (2020). DOI: 10.1007/s11082-020-02314-8
  23. O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, T.S. Kondratenko. J. Lumin., 207, 626 (2019). DOI: 10.1016/j.jlumin.2018.12.019
  24. T. Kondratenko, O. Ovchinnikov, I. Grevtseva, M. Smirnov, O. Erina, V. Khokhlov, B. Darinsky, E. Tatianina. Materials, 13 (4), 909 (2020). DOI: 10.3390/ma13040909
  25. I.G. Grevtseva, S.V. Aslanov. Bulletin of the Russian Academy of Sciences: Physics, 84 (5), 517 (2020). DOI: 10.3103/s1062873820050111
  26. O.V. Ovchinnikov, T.S. Kondratenko, I.G. Grevtseva, M.S. Smirnov, S.I. Pokutnyi. J. Nanophotonics, 10 (3), 033505 (2016). DOI: 10.1117/1.JNP.10.033505
  27. O.V. Ovchinnikov, M.S. Smirnov, T.S. Kondratenko, S.A. Ambrosevich, M.T. Metlin, I.G. Grevtseva, A.S. Perepelitsa. J. Nanoparticle Research, 19 (12), 403 (2017). DOI: 10.1007/s11051-017-4093-2
  28. O.V. Ovchinnikov, A.S. Perepelitsa, M.S. Smirnov, A.N. Latyshev, I.G. Grevtseva, G.N. Goltsman, R.B. Vasiliev, A.G. Vitukhnovsky. J. Lumin., 220, 117008 (2020). DOI: 10.1016/j.jlumin.2019.117008
  29. V.A. Krivenkov, P.S. Samokhvalov, P.A. Linkov, D.O. Solovyeva, G.E. Kotkovskii, A.A. Chistyakov, I. Nabiev. In: Proceedings Volume 9126, Nanophotonics V, 91263N (2014). DOI: 10.1117/12.2057828
  30. D.L. Nida,N. Nitin,W.W. Yu, V. L. Colvin,R. Richards-Kortum. Nanotechnology, 19 (3), 035701 (2008). DOI: 10.1088/0957-4484/19/03/035701
  31. Y. Sun, F. Song, C. Qian, K. Peng, S. Sun, Y. Zhao, Z. Bai, J. Tang, S. Wu, H. Ali, F. Bo, H. Zhong, K. Jin, X. Xu. ACS Photonics, 4, 369 (2017). DOI: 10.1021/acsphotonics.6b00843
  32. E.V. Klyachkovskaya, S.V. Vashchenko, A.P. Stupak, S.V. Gaponenko. J. Appl. Spectrosc., 77, 793 (2010). DOI: 10.1007/s10812-010-9395-4
  33. K.V. Vokhmintcev, C. Guhrenz, N. Gaponik, I. Nabiev, P.S. Samokhvalov. J. Phys. Conf. Ser., 784, 012014 (2017). DOI: 10.1088/1742-6596/784/1/012014
  34. D. Vasudevan, R.R. Gaddam, A. Trinchi, I. Cole. J. Alloys and Compounds, 636, 395 (2015). DOI: 10.1016/j.jallcom.2015.02.102
  35. J. Kim, D. Hwang, H. Jung, K. Kim, X.-H. Pham, S.-H. Lee, J. Byun, W. Kim, H.-M. Kim, E. Hahm, K.-m. Ham, W.-Y. Rho, D. Lee, B.-H. Jun. J. Nanobiotechnol., 20, 22 (2022). DOI: 10.1186/s12951-021-01227-2
  36. M.S. Smirnov, O.V. Buganov, S.A. Tikhomirov, O.V. Ovchinnikov, E.V. Shabunya-Klyachkovskaya, I.G. Grevtseva, T.S. Kondratenko. J. Nanoparticle Research, 19, 376 (2017). DOI: 10.1007/s11051-017-4067-4
  37. K.D. Wegner, F. Dussert, D. Truffier-Boutry, A. Benayad, D. Beal, L. Mattera, W.L. Ling, M. Carriere, P. Reiss. Front. Chem., 27 (7), 466 (2019). DOI: 10.3389/fchem.2019.00466
  38. A.S. Perepelitsa, O.V. Ovchinnikov, M.S. Smirnov, T.S. Kondratenko, I.G. Grevtseva, S.V. Aslanov, V.Y. Khokhlov. J. Lumin., 231, 117805 (2021). DOI: 10.1016/j.jlumin.2020.117805
  39. I. Piwonski, J. Grobelny, M. Cichomski, G. Celichowski, J. Rogowski. Applied Surface Science, 242 (1-2), 147 (2005). DOI: 10.1016/j.apsusc.2004.08.009
  40. Sh. Lin, Y. Feng, X. Wen. Phys. Chem., 119, 867 (2015). DOI: 10.1021/ jp511054g
  41. M.S. Smirnov, O.V. Ovchinnikov. J. Lumin., 227, 117526-1-8 (2020). DOI: 10.1016/j.jlumin.2020.117526
  42. N. Fujimura, A. Ohta, K. Makihara, S. Miyazaki. Jpn. J. Appl. Phys., 55, 08PC06 (2016). DOI: 10.7567/JJAP.55.08PC06
  43. A.N. Latyshev, O.V. Ovchinnikov, S.S. Okhotnikov. J. Appl. Spectrosc., 70 (6), 817 (2003). DOI: 10.1023/B:JAPS.0000016295.19263.97
  44. V.M. Ievlev, A.N. Latyshev, O.V. Ovchinnikov, M.S. Smirnov, V.G. Klyuev, A.M. Kholkina, A.N. Utekhin, A.B. Evlev. Doklady Physics, 51 (8), 400 (2006). DOI: 10.1134/S1028335806080027
  45. O.V. Ovchinnikov, M.S. Smirnov, A.N. Latyshev, D.I. Stasel'ko. Opt. Spectrosc., 103 (3), 482 (2007)
  46. M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva, A.I. Zvyagin, A.S. Perepelitsa, R.A. Ganeev. Opt. Spectrosc., 124 (5), 681 (2018). DOI: 10.1134/S0030400X18050211
  47. A.N. Latyshev, O.V. Ovchinnikov, V.G. Klyuev, M.S. Smirnov, D.I. Stasel'ko. Opt. Spectrosc., 114 (4), 544 (2013). DOI: 10.1134/S0030400X13040115
  48. M.S. Smirnov, O.V. Ovchinnikov, N.A.R. Hazal, A.I. Zvyagin. Inorganic Materials, 54 (5), 413 (2018). DOI: 10.1134/S002016851805014X
  49. Z.T. Banizi, M. Seif. Mater. Res. Express, 4 (10), 105007 (2017). DOI: 10.1088/2053-1591/aa8a8a
  50. F.O. Silva, M.S. Carvalho, R. Mendon a, W.A.A. Macedo, K. Balzuweit, P. Reiss, M.A. Schiavon. Nanoscale Res. Lett., 7 (1), 536 (2012). DOI: 10.1186/1556-276X-7-536
  51. Ch. Chung, M. Lee. Bull. Korean Chem. Soc., 25 (10), 1461 (2004). DOI: 10.5012/bkcs.2004.25.10.1461
  52. K. Nakamoto. IR spectra and Raman spectra of inorganic and coordination compounds (Mir, Moscow, 1991)
  53. A.R. Attar, D.E. Blumling, K.L. Knappenberger. J. Chem. Phys., 134, 024514 (2011). DOI: 10.1063/1.3526746
  54. M.-A. Chen, X.-B. Lu, Z.-H. Guo, R. Huang. Corrosion Science, 53 (9), 2793 (2011). DOI: 10.1016/j.corsci.2011.05.010
  55. N. Nuryono,N.M. Rosiati, B. Rusdiarso, S.C.W. Sakti, S. Tanaka. Springerplus, 11 (3), 515 (2011). DOI: 10.1186/2193-1801-3-515

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru