Bulyansky S. V.1,2, Litvinova K. I.1,2, Kirilenko E. P.1, Rudakov G. A.1, Dudin A. A.1
1 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
2Research and Production Complex “Technological Center” MIET, Zelenograd, Moscow, Russia
Email: litkristy@gmail.com
In this article, we consider defect formation in hafnium oxide, which belongs tohigh-K-dielectrics and is a promising material in different areas of nano- and optoelectronics. Hafnium oxide, synthesized by the method of atomic layer deposition, usually forms with a significant oxygen deficiency and contains large number of vacancies. The oxygen vacancies characterized by photoluminescence methods. We showed that the electron-phonon interaction greatly influenced on formation of emission bands. In this case, the emission band can't identify only by the emission maximum. We need to calculate such band parameters as heat release and the energy of a purely electronic transition. This energy that can be compared with the results of theoretical calculations from the first principles. Keywords: hafnium oxide, photoluminescence, electron-phonon interaction.
- X.-Y. Zhang, C.-H. Hsu, Y.-S. Cho, S. Zhang, S.-Y. Lien, W.-Z. Zhu, F.-B. Xiong. Thin Solid Films 660, 797 (2018). https://doi.org/10.1016/j.tsf.2018.03.055
- L. Gallais, J. Capoulade, J.-Y. Natoli, M. Commandre, M. Cathelinaud, C. Koc, M. Lequime. Appl. Opt. 47, 13, C107 (2008). https://doi.org/10.1364/AO.47.00C107
- S. Shimada, T. Aketo. J. Am. Ceram. Soc. 88, 4, 845 (2005). https://doi.org/10.1111/j.1551-2916.2005.00202.x
- H. Geng, T. Lin, A.J. Letha, H.-L. Hwang, F.A. Kyznetsov, T.P. Smirnova, A.A. Saraev, V.V. Kaichev. Appl. Phys. Lett. 105, 12, 123905 (2014). https://doi.org/10.1063/1.4896619
- J. Wang, S.S. Mottaghian, M.F. Baroughi. IEEE Trans. Electron Devices 59, 2, 342 (2012). https://doi.org/10.1109/TED.2011.2176943
- J. Robertson. J. Appl. Phys. 104, 12, 124111 (2008). https://doi.org/10.1063/1.3041628
- P.W. Peacock, J. Robertson. J. Appl. Phys. 92, 8, 4712 (2002). https://doi.org/10.1063/1.1506388
- J. Robertson. Eur. Phys. J. Appl. Phys. 28, 3, 265 (2004). https://doi.org/10.1051/epjap:2004206
- J.H. Choi, Y. Mao, J.P. Chang. Mater. Sci. Eng.: R Rep. 72, 6, 97 (2011). https://doi.org/10.1016/j.mser.2010.12.001
- K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, M. Leskela. Thin Solid Films 416, 1-2, 72 (2002). https://doi.org/10.1016/S0040-6090(02)00612-0
- X. Zhao, D. Vanderbilt. Phys. Rev. B 65, 23, 233106 (2002). https://doi.org/10.1103/PhysRevB.65.233106
- G.-M. Rignanese, X. Gonze, G. Jun, K. Cho, A. Pasquarello. Phys. Rev. B 69, 18, 184301 (2004). https://doi.org/10.1103/PhysRevB.69.184301
- W.A. MacDonald. J. Mater. Chem. 14, 1, 4 (2004). https://doi.org/10.1039/b310846p
- D.E. Mentley. Proc. IEEE 90, 4, 453 (2002). https://doi.org/10.1109/JPROC.2002.1002520
- H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono. Appl. Phys. Lett. 89, 11, 112123 (2006). https://doi.org/10.1063/1.2353811
- K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono. Nature 432, 7016, 488 (2004). https://doi.org/10.1038/nature03090
- E. Fortunato, N. Correia, P. Barquinha, L. Pereira, G. Goncalves, R. Martins. IEEE Electron Device Lett. 29, 9, 988 (2008). https://doi.org/10.1109/LED.2008.2001549
- D.C. Paine, B. Yaglioglu, Z. Beiley, S. Lee. Thin Solid Films 516, 17, 5894 (2008). https://doi.org/10.1016/j.tsf.2007.10.081
- P. Barquinha, G. Goncalves, L. Pereira, R. Martins, E. Fortunato. Thin Solid Films 515, 24, 8450 (2007). https://doi.org/10.1016/j.tsf.2007.03.176
- S.-H.K. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M.S. Oh, S. Im. Adv. Mater. 21, 6, 678 (2009). https://doi.org/10.1002/adma.200801470
- D.H. Levy, D. Freeman, S.F. Nelson, P.J. Cowdery-Corvan, L.M. Irving. Appl. Phys. Lett. 92, 19, 192101 (2008). https://doi.org/10.1063/1.2924768
- R.L. Hoffman, B.J. Norris, J.F. Wager. Appl. Phys. Lett. 82, 5, 733 (2003). https://doi.org/10.1063/1.1542677
- P.F. Carcia, R.S. McLean, M.H. Reilly, M.K. Crawford, E.N. Blanchard, A.Z. Kattamis, S. Wagner. J. Appl. Phys. 102, 7, 074512 (2007). https://doi.org/10.1063/1.2786869
- H.C.M. Knoops, E. Langereis, M.C.M. vandeSanden, W.M.M. Kessels. J. Electrochem. Soc. 157, 12, G241 (2010). https://doi.org/10.1149/1.3491381
- J. Lu, J. Aarik, J. Sundqvist, K. Kukli, A. H rsta, J.-O. Carlsson. J. Cryst. Growth 273, 3-4, 510 (2005). https://doi.org/10.1016/j.jcrysgro.2004.09.064
- S.M. George, A.W. Ott, J.W. Klaus. J. Phys. Chem. 100, 31, 13121 (1996). https://doi.org/10.1021/jp9536763
- M. Leskela, M. Ritala. Thin Solid Films 409, 1, 138 (2002). https://doi.org/10.1016/S0040-6090(02)00117-7
- R.L. Puurunen. J. Appl. Phys. 97, 12, 121301 (2005). https://doi.org/10.1063/1.1940727
- V. Miikkulainen, M. Leskela, M. Ritala, R.L. Puurunen. J. Appl. Phys. 113, 2, 21301 (2013). https://doi.org/10.1063/1.4757907
- V.A. Gritsenko, T.V. Perevalov, D.R. Islamov. Phys. Rep. 613, 1 (2016). https://doi.org/10.1016/j.physrep.2015.11.002
- T.-C. Tien, L.-C. Lin, L.-S. Lee, C.-J. Hwang, S. Maikap, Y.M. Shulga. J. Mater. Sci.: Mater. Electron. 21, 5, 475 (2010). https://doi.org/10.1007/s10854-009-9941-0
- K. Yan, W. Yao, Y. Zhao, L. Yang, J. Cao, Y. Zhu. Appl. Surf. Sci. 390, 260 (2016). https://doi.org/10.1016/j.apsusc.2016.08.051
- P. Broqvist, A. Pasquarello. Appl. Phys. Lett. 89, 26, 262904 (2006). https://doi.org/10.1063/1.2424441
- E.S. Toberer, M. Christensen, B.B. Iversen, G.J. Snyder. Phys. Rev. B 77, 7, 075203 (2008). https://doi.org/10.1103/PhysRevB.77.075203
- H. Zheng, Z.F. Wang, T. Luo, Q.W. Shi, J. Chen. Phys. Rev. B 75, 16, 165414 (2007). https://doi.org/10.1103/PhysRevB.75.165414
- J. Robertson. Rep. Progr. Phys. 69, 2, 327 (2006). https://doi.org/10.1088/0034-4885/69/2/R02
- D. Munoz Ramo, A.L. Shluger, J.L. Gavartin, G. Bersuker. Phys. Rev. Lett. 99, 15, 155504 (2007). https://doi.org/10.1103/PhysRevLett.99.155504
- K. Xiong, J. Robertson, M.C. Gibson, S.J. Clark. Appl. Phys. Lett. 87, 18, 183505 (2005). https://doi.org/10.1063/1.2119425
- D.R. Islamov, V.A. Gritsenko, V.N. Kruchinin, E.V. Ivanova, M.V. Zamoryanskaya, M.S. Lebedev. Phys. Solid State 60, 10, 2050 (2018). https://doi.org/10.1134/S1063783418100098
- I. Villa, A. Vedda, M. Fasoli, R. Lorenzi, N. Kranzlin, F. Rechberger, G. Ilari, D. Primc, B. Hattendorf, F.J. Heiligtag, M. Niederberger, A. Lauria. Chem. Mater. 28, 10, 3245 (2016). https://doi.org/10.1021/acs.chemmater.5b03811
- E.V. Ivanova, M.V. Zamoryanskaya, V.A. Pustovarov, V.S. Aliev, V.A. Gritsenko, A.P. Yelisseyev. J. Exp. Theor. Phys. 120, 4, 710 (2015). https://doi.org/10.1134/S1063776115020132
- Y.M. Strzhemechny, M. Bataiev, S.P. Tumakha, S.H. Goss, C.L. Hinkle, C.C. Fulton, G. Lucovsky, L.J. Brillson. J. Vac. Sci. Technol. B 26, 1, 232 (2008). https://doi.org/10.1116/1.2830692
- S. Walsh, L. Fang, J.K. Schaeffer, E. Weisbrod, L.J. Brillson. Appl. Phys. Lett. 90, 5, 052901 (2007). https://doi.org/10.1063/1.2435585
- V.V. Kaichev, E.V. Ivanova, M.V. Zamoryanskaya, T.P. Smirnova, L.V. Yakovkina, V.A. Gritsenko. Eur. Phys. J. Appl. Phys. 64, 1, 10302 (2013). https://doi.org/10.1051/epjap/2013130005
- A.A. Rastorguev, V.I. Belyi, T.P. Smirnova, L.V. Yakovkina, M.V. Zamoryanskaya, V.A. Gritsenko, H. Wong. Phys. Rev. B 76, 23, 235315 (2007). https://doi.org/10.1103/PhysRevB.76.235315
- T. Ito, M. Maeda, K. Nakamura, H. Kato, Y. Ohki. J. Appl. Phys. 97, 5, 054104 (2005). https://doi.org/10.1063/1.1856220
- M. Kong, B. Li, C. Guo, P. Zeng, M. Wei, W. He. Coatings 9, 5, 307 (2019). https://doi.org/10.3390/coatings9050307
- P. Maku a, M. Pacia, W. Macyk. J. Phys. Chem. Lett. 9, 23, 6814 (2018). https://doi.org/10.1021/acs.jpclett.8b02892
- S.V. Bulyarski, V.S. Gorelik, G.G. Gusarov, D.A. Koiva, A.V. Lakalin. Optics. Spectroscopy 128, 5, 590 (2020). https://doi.org/10.1134/S0030400X20050057
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.