Physics of the Solid State
Volumes and Issues
Photoluminescence of hafnium oxide synthesized by atomic layer deposition
Bulyansky S. V.1,2, Litvinova K. I.1,2, Kirilenko E. P.1, Rudakov G. A.1, Dudin A. A.1
1 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
2Research and Production Complex “Technological Center” MIET, Zelenograd, Moscow, Russia
Email: litkristy@gmail.com

PDF
In this article, we consider defect formation in hafnium oxide, which belongs tohigh-K-dielectrics and is a promising material in different areas of nano- and optoelectronics. Hafnium oxide, synthesized by the method of atomic layer deposition, usually forms with a significant oxygen deficiency and contains large number of vacancies. The oxygen vacancies characterized by photoluminescence methods. We showed that the electron-phonon interaction greatly influenced on formation of emission bands. In this case, the emission band can't identify only by the emission maximum. We need to calculate such band parameters as heat release and the energy of a purely electronic transition. This energy that can be compared with the results of theoretical calculations from the first principles. Keywords: hafnium oxide, photoluminescence, electron-phonon interaction.
  1. X.-Y. Zhang, C.-H. Hsu, Y.-S. Cho, S. Zhang, S.-Y. Lien, W.-Z. Zhu, F.-B. Xiong. Thin Solid Films 660, 797 (2018). https://doi.org/10.1016/j.tsf.2018.03.055
  2. L. Gallais, J. Capoulade, J.-Y. Natoli, M. Commandre, M. Cathelinaud, C. Koc, M. Lequime. Appl. Opt. 47, 13, C107 (2008). https://doi.org/10.1364/AO.47.00C107
  3. S. Shimada, T. Aketo. J. Am. Ceram. Soc. 88, 4, 845 (2005). https://doi.org/10.1111/j.1551-2916.2005.00202.x
  4. H. Geng, T. Lin, A.J. Letha, H.-L. Hwang, F.A. Kyznetsov, T.P. Smirnova, A.A. Saraev, V.V. Kaichev. Appl. Phys. Lett. 105, 12, 123905 (2014). https://doi.org/10.1063/1.4896619
  5. J. Wang, S.S. Mottaghian, M.F. Baroughi. IEEE Trans. Electron Devices 59, 2, 342 (2012). https://doi.org/10.1109/TED.2011.2176943
  6. J. Robertson. J. Appl. Phys. 104, 12, 124111 (2008). https://doi.org/10.1063/1.3041628
  7. P.W. Peacock, J. Robertson. J. Appl. Phys. 92, 8, 4712 (2002). https://doi.org/10.1063/1.1506388
  8. J. Robertson. Eur. Phys. J. Appl. Phys. 28, 3, 265 (2004). https://doi.org/10.1051/epjap:2004206
  9. J.H. Choi, Y. Mao, J.P. Chang. Mater. Sci. Eng.: R Rep. 72, 6, 97 (2011). https://doi.org/10.1016/j.mser.2010.12.001
  10. K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, M. Leskela. Thin Solid Films 416, 1-2, 72 (2002). https://doi.org/10.1016/S0040-6090(02)00612-0
  11. X. Zhao, D. Vanderbilt. Phys. Rev. B 65, 23, 233106 (2002). https://doi.org/10.1103/PhysRevB.65.233106
  12. G.-M. Rignanese, X. Gonze, G. Jun, K. Cho, A. Pasquarello. Phys. Rev. B 69, 18, 184301 (2004). https://doi.org/10.1103/PhysRevB.69.184301
  13. W.A. MacDonald. J. Mater. Chem. 14, 1, 4 (2004). https://doi.org/10.1039/b310846p
  14. D.E. Mentley. Proc. IEEE 90, 4, 453 (2002). https://doi.org/10.1109/JPROC.2002.1002520
  15. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono. Appl. Phys. Lett. 89, 11, 112123 (2006). https://doi.org/10.1063/1.2353811
  16. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono. Nature 432, 7016, 488 (2004). https://doi.org/10.1038/nature03090
  17. E. Fortunato, N. Correia, P. Barquinha, L. Pereira, G. Goncalves, R. Martins. IEEE Electron Device Lett. 29, 9, 988 (2008). https://doi.org/10.1109/LED.2008.2001549
  18. D.C. Paine, B. Yaglioglu, Z. Beiley, S. Lee. Thin Solid Films 516, 17, 5894 (2008). https://doi.org/10.1016/j.tsf.2007.10.081
  19. P. Barquinha, G. Goncalves, L. Pereira, R. Martins, E. Fortunato. Thin Solid Films 515, 24, 8450 (2007). https://doi.org/10.1016/j.tsf.2007.03.176
  20. S.-H.K. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M.S. Oh, S. Im. Adv. Mater. 21, 6, 678 (2009). https://doi.org/10.1002/adma.200801470
  21. D.H. Levy, D. Freeman, S.F. Nelson, P.J. Cowdery-Corvan, L.M. Irving. Appl. Phys. Lett. 92, 19, 192101 (2008). https://doi.org/10.1063/1.2924768
  22. R.L. Hoffman, B.J. Norris, J.F. Wager. Appl. Phys. Lett. 82, 5, 733 (2003). https://doi.org/10.1063/1.1542677
  23. P.F. Carcia, R.S. McLean, M.H. Reilly, M.K. Crawford, E.N. Blanchard, A.Z. Kattamis, S. Wagner. J. Appl. Phys. 102, 7, 074512 (2007). https://doi.org/10.1063/1.2786869
  24. H.C.M. Knoops, E. Langereis, M.C.M. vandeSanden, W.M.M. Kessels. J. Electrochem. Soc. 157, 12, G241 (2010). https://doi.org/10.1149/1.3491381
  25. J. Lu, J. Aarik, J. Sundqvist, K. Kukli, A. H rsta, J.-O. Carlsson. J. Cryst. Growth 273, 3-4, 510 (2005). https://doi.org/10.1016/j.jcrysgro.2004.09.064
  26. S.M. George, A.W. Ott, J.W. Klaus. J. Phys. Chem. 100, 31, 13121 (1996). https://doi.org/10.1021/jp9536763
  27. M. Leskela, M. Ritala. Thin Solid Films 409, 1, 138 (2002). https://doi.org/10.1016/S0040-6090(02)00117-7
  28. R.L. Puurunen. J. Appl. Phys. 97, 12, 121301 (2005). https://doi.org/10.1063/1.1940727
  29. V. Miikkulainen, M. Leskela, M. Ritala, R.L. Puurunen. J. Appl. Phys. 113, 2, 21301 (2013). https://doi.org/10.1063/1.4757907
  30. V.A. Gritsenko, T.V. Perevalov, D.R. Islamov. Phys. Rep. 613, 1 (2016). https://doi.org/10.1016/j.physrep.2015.11.002
  31. T.-C. Tien, L.-C. Lin, L.-S. Lee, C.-J. Hwang, S. Maikap, Y.M. Shulga. J. Mater. Sci.: Mater. Electron. 21, 5, 475 (2010). https://doi.org/10.1007/s10854-009-9941-0
  32. K. Yan, W. Yao, Y. Zhao, L. Yang, J. Cao, Y. Zhu. Appl. Surf. Sci. 390, 260 (2016). https://doi.org/10.1016/j.apsusc.2016.08.051
  33. P. Broqvist, A. Pasquarello. Appl. Phys. Lett. 89, 26, 262904 (2006). https://doi.org/10.1063/1.2424441
  34. E.S. Toberer, M. Christensen, B.B. Iversen, G.J. Snyder. Phys. Rev. B 77, 7, 075203 (2008). https://doi.org/10.1103/PhysRevB.77.075203
  35. H. Zheng, Z.F. Wang, T. Luo, Q.W. Shi, J. Chen. Phys. Rev. B 75, 16, 165414 (2007). https://doi.org/10.1103/PhysRevB.75.165414
  36. J. Robertson. Rep. Progr. Phys. 69, 2, 327 (2006). https://doi.org/10.1088/0034-4885/69/2/R02
  37. D. Munoz Ramo, A.L. Shluger, J.L. Gavartin, G. Bersuker. Phys. Rev. Lett. 99, 15, 155504 (2007). https://doi.org/10.1103/PhysRevLett.99.155504
  38. K. Xiong, J. Robertson, M.C. Gibson, S.J. Clark. Appl. Phys. Lett. 87, 18, 183505 (2005). https://doi.org/10.1063/1.2119425
  39. D.R. Islamov, V.A. Gritsenko, V.N. Kruchinin, E.V. Ivanova, M.V. Zamoryanskaya, M.S. Lebedev. Phys. Solid State 60, 10, 2050 (2018). https://doi.org/10.1134/S1063783418100098
  40. I. Villa, A. Vedda, M. Fasoli, R. Lorenzi, N. Kranzlin, F. Rechberger, G. Ilari, D. Primc, B. Hattendorf, F.J. Heiligtag, M. Niederberger, A. Lauria. Chem. Mater. 28, 10, 3245 (2016). https://doi.org/10.1021/acs.chemmater.5b03811
  41. E.V. Ivanova, M.V. Zamoryanskaya, V.A. Pustovarov, V.S. Aliev, V.A. Gritsenko, A.P. Yelisseyev. J. Exp. Theor. Phys. 120, 4, 710 (2015). https://doi.org/10.1134/S1063776115020132
  42. Y.M. Strzhemechny, M. Bataiev, S.P. Tumakha, S.H. Goss, C.L. Hinkle, C.C. Fulton, G. Lucovsky, L.J. Brillson. J. Vac. Sci. Technol. B 26, 1, 232 (2008). https://doi.org/10.1116/1.2830692
  43. S. Walsh, L. Fang, J.K. Schaeffer, E. Weisbrod, L.J. Brillson. Appl. Phys. Lett. 90, 5, 052901 (2007). https://doi.org/10.1063/1.2435585
  44. V.V. Kaichev, E.V. Ivanova, M.V. Zamoryanskaya, T.P. Smirnova, L.V. Yakovkina, V.A. Gritsenko. Eur. Phys. J. Appl. Phys. 64, 1, 10302 (2013). https://doi.org/10.1051/epjap/2013130005
  45. A.A. Rastorguev, V.I. Belyi, T.P. Smirnova, L.V. Yakovkina, M.V. Zamoryanskaya, V.A. Gritsenko, H. Wong. Phys. Rev. B 76, 23, 235315 (2007). https://doi.org/10.1103/PhysRevB.76.235315
  46. T. Ito, M. Maeda, K. Nakamura, H. Kato, Y. Ohki. J. Appl. Phys. 97, 5, 054104 (2005). https://doi.org/10.1063/1.1856220
  47. M. Kong, B. Li, C. Guo, P. Zeng, M. Wei, W. He. Coatings 9, 5, 307 (2019). https://doi.org/10.3390/coatings9050307
  48. P. Maku a, M. Pacia, W. Macyk. J. Phys. Chem. Lett. 9, 23, 6814 (2018). https://doi.org/10.1021/acs.jpclett.8b02892
  49. S.V. Bulyarski, V.S. Gorelik, G.G. Gusarov, D.A. Koiva, A.V. Lakalin. Optics. Spectroscopy 128, 5, 590 (2020). https://doi.org/10.1134/S0030400X20050057

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru