Physics of the Solid State
Volumes and Issues
Laser-induced graphene and its modification with polypyrrole for increasing microsupercapacitor capacitance
Mikheev K. G. 1, Syugaev A. V. 1, Zonov R. G. 1, Bulatov D. L. 1, Mikheev G. M. 1
1Udmurt Federal Research Center, Ural Branch Russian Academy of Sciences, Izhevsk, Russia
Email: k.mikheev@udman.ru, znv@udman.ru, dlbulatov@udman.ru, mikheev@udman.ru

PDF
Laser-induced graphene (LIG) films were synthesized by line-by-line scanning of cw CO2 laser focused radiation on the surface of industrial polyimide film as a result of pyrolysis of its near-surface layer. The structure of the synthesized film material is shown to be heterogeneous in thickness by Raman spectroscopy. The results of the study of the effect of the laser power and the distance between the lines on the specific electrical capacitance c of the synthesized material in aqueous solution of sulfuric acid are presented. It is shown that modification of LIG with polypyrrole (PPy) allows to increase c up to 60 mF/cm2. PPy-modified LIG films were used to make a prototype of a flexible film microsupercapacitor with an area of 8 cm2, using a gel electrolyte based on sulfuric acid and polyvinyl alcohol, with a 230 mF capacitance. Keywords: laser-induced graphene, electric capacitance, polypyrrole, microsupercapacitor.
  1. Y. Bleu, F. Bourquard, T. Tite, A.-S. Loir, C. Maddi. Front. Chem. 6 (2018)
  2. V.B. Mohan, K. tak Lau, D. Hui, D. Bhattacharyya, V. Balaji, K. tak Lau, D. Hui, D. Bhattacharyya. Compos. Part B Eng. 142, 200 (2018)
  3. H. Tan, D. Wang, Y. Guo. Coatings 8, 40 (2018)
  4. A. Adetayo, D. Runsewe. Open J. Compos. Mater. 9, 207 (2019)
  5. A. Hussain, S. Muntazir, N. Abbas, M. Hussain, R. Ali. Mater. Chem. Phys. 248, 122924 (2020)
  6. J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E.L.G.G. Samuel, M.J. Yacaman, B.I. Yakobson, J.M. Tour. Nature Commun. 5, 5714 (2014)
  7. A. Lamberti, F. Perrucci, M. Caprioli, M. Serrapede, M. Fontana, S. Bianco, S. Ferrero, E. Tresso. Nanotechnology 28, 174002 (2017)
  8. L.X. Duy, Z. Peng, Y. Li, J. Zhang, Y. Ji, J.M. Tour. Carbon 126, 472 (2018)
  9. J.B. In, B. Hsia, J.-H. Yoo, J.-H. Yoo, S. Hyun, C. Carraro, R. Maboudian, C.P. Grigoropoulos. Carbon 83, 144 (2015)
  10. J. Cai, C. Lv, A. Watanabe. J. Mater. Chem. A 4, 1671 (2016)
  11. B. Kulyk, B.F.R. Silva, A.F. Carvalho, P. Barbosa, A.V. Girao, J. Deuermeier, A.J.S. Fernandes, F.M.L. Figueiredo, E. Fortunato, F.M. Costa. Adv. Mater. Technol. 2022, 2101311 (2022)
  12. F. Wang, K. Wang, B. Zheng, X. Dong, X. Mei, J. Lv, W. Duan, W. Wang, Mater. Technol. 33, 340 (2018)
  13. R. Ye, D.K. James, J.M. Tour. Acc. Chem. Res. 51, 1609 (2018)
  14. Y. Chyan, R. Ye, Y. Li, S.P. Singh, C. J. Arnusch, J.M. Tour. ACS Nano 12, 2176 (2018)
  15. K.G. Mikheev, R.G. Zonov, T.N. Mogileva, A.E. Fateev, G.M. Mikheev, Opt. Laser Technol. 141, 107143 (2021)
  16. C.T. Long, J.H. Oh, A.D. Martinez, C.I. Sanchez, A. Sarmah, K. Arole, M.T. Rubio, M.J. Green. Carbon 200, 264 (2022)
  17. K.G. Mikheev, R.G. Zonov, A.V. Syugaev, D.L. Bulatov, G.M. Mikheev. PSS, 64, 579 (2022)
  18. Y. Li, D. X. Luong, J. Zhang, Y. R. Tarkunde, C. Kittrell, F. Sargunaraj, Y. Ji, C.J. Arnusch, J.M. Tour. Adv. Mater. 29, 1700496 (2017)
  19. H. Wang, Z. Zhao, P. Liu, X. Guo. Biosensors 12, 55 (2022)
  20. P. Xue, Z. Huang, C. Chen. Lubricants 10, 239 (2022)
  21. R. Ye, D.K. James, J.M. Tour. Adv. Mater. 31, 1803621 (2019)
  22. L. Lan, X. Le, H. Dong, J. Xie, Y. Ying, J. Ping. Biosens. Bioelectron. 165, 112360 (2020)
  23. Y.H. Yen, C.S. Hsu, Z.Y. Lei, H.J. Wang, C.Y. Su, C.L. Dai, Y.C. Tsai. Micromachines 13, 1 (2022)
  24. Y.P. Suhorukov, A.V. Telegin, K.G. Mikheev, R.G. Zonov, L.I. Naumova, G. M. Mikheev. Opt. Mater. 133, 112957 (2022)
  25. J. Liu, H. Ji, X. Lv, C. Zeng, H. Li, F. Li, B. Qu, F. Cui, Q. Zhou. Microchim. Acta 189, 54 (2022)
  26. J. Gao, S. He, A. Nag. Sensors 21, 2818 (2021)
  27. K.G. Mikheev, R.G. Zonov, D.L. Bulatov, A.E. Fateev, G.M. Mikheev. Tech. Phys. Lett. 46, 458 (2020)
  28. E.L. Ivchenko. Phys. Status Solidi 249, 2538 (2012)
  29. A.S. Saushin, G.M. Mikheev, V.V. Vanyukov, Y.P. Svirko. Nanomaterials 11, 2827 (2021)
  30. C. Zhang, W. Lv, Y. Tao, Q.-H. Yang. Energy Environ. Sci. 8, 1390 (2015)
  31. N.A. Kyeremateng, T. Brousse, D. Pech. Nat. Nanotechnol. 12, 7 (2017)
  32. M. Beidaghi, Y. Gogotsi. Energy Environ. Sci. 7, 867 (2014)
  33. J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang, Angew. Chem. Int. Ed. 50, 1683 (2011)
  34. Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li, P.R. Smalley, J. Lin, J.M. Tour. ACS Nano 9, 5868 (2015)
  35. L. Li, J. Zhang, Z. Peng, Y. Li, C. Gao, Y. Ji, R. Ye, N.D. Kim, Q. Zhong, Y. Yang, H. Fei, G. Ruan, J.M. Tour. Adv. Mater. 28, 838 (2016)
  36. A.C. Ferrari. Solid State Commun. 143, 47 (2007)
  37. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim. Phys. Rev. Lett. 97, 1 (2006)
  38. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus. Phys. Rep. 473, 51 (2009)
  39. A. Kaidarova, J. Kosel. IEEE Sens. J. 21, 12426 (2021)
  40. Y. Furukawa, S. Tazawa, Y. Fujii, I. Harada. Synth. Met. 24, 329 (1988)
  41. X. Yu, N. Li, S. Zhang, C. Liu, L. Chen, S. Han, Y. Song, M. Han, Z. Wang, J. Power Sources 478, 229075 (2020)
  42. S.R. Sivakkumar, W.J. Kim, J. A. Choi, D.R. MacFarlane, M. Forsyth, D.W. Kim. J. Power Sources 171, 1062 (2007)
  43. N. Mahato, D. Mohapatra, M.H. Cho, K.S. Ahn. Energies 15, 2001 (2022).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru